Nonlinear time series analysis of normal and pathological human walking

被引:454
|
作者
Dingwell, JB
Cusumano, JP
机构
[1] Rehabil Inst Chicago, Sensory Motor Performance Program, Chicago, IL 60611 USA
[2] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
关键词
D O I
10.1063/1.1324008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed. (C) 2000 American Institute of Physics. [S1054-1500(00)00804-1].
引用
收藏
页码:848 / 863
页数:16
相关论文
共 50 条
  • [1] Nonlinear Time-Series Analysis of Different Human Walking Gaits
    Iqbal, Sajid
    Zang, Xizhe
    Zhu, Yanhe
    Saad, Hanadi Mohammed Abass Ali
    Zhao, Jie
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2015, : 25 - 30
  • [2] Nonlinear time series analysis of the human electrocardiogram
    Perc, M
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2005, 26 (05) : 757 - 768
  • [3] TIME-SERIES ANALYSIS OF GLOTTAL AIR-FLOW IN NORMAL AND PATHOLOGICAL PHONATION
    SHOJI, K
    MRA, Z
    YU, JD
    BLAUGRUND, SM
    ISSHIKI, N
    [J]. LARYNGOSCOPE, 1992, 102 (10): : 1118 - 1122
  • [4] NONLINEAR TIME SERIES ANALYSIS
    Yazdani, Alireza
    [J]. JOURNAL OF INVESTMENT MANAGEMENT, 2020, 18 (01): : 99 - 100
  • [5] Nonlinear time series analysis
    Yang, Minxian
    [J]. ECONOMIC RECORD, 2008, 84 (266) : 396 - 397
  • [6] Nonlinear time series analysis
    Grassberger, P
    [J]. PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 1540 - 1540
  • [7] NONLINEAR TIME SERIES ANALYSIS
    Munion, Ascher K.
    Butner, Jonathan E.
    [J]. PSYCHOMETRIKA, 2020, 85 (03) : 812 - 814
  • [8] Assessment of walking stability of elderly by means of nonlinear time-series analysis and simple accelerometry
    Ohtaki, Y
    Arif, M
    Suzuki, A
    Fujita, K
    Inooka, H
    Nagatomi, R
    Tsuji, I
    [J]. JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2005, 48 (04) : 607 - 612
  • [9] Nonlinear time series analysis of knee and ankle kinematics during side by side treadmill walking
    Nessler, Jeff A.
    De Leone, Charles J.
    Gilliland, Sara
    [J]. CHAOS, 2009, 19 (02)
  • [10] Surrogate for nonlinear time series analysis
    Dolan, KT
    Spano, ML
    [J]. PHYSICAL REVIEW E, 2001, 64 (04):