Numerical Simulations in Nonlinear Elastic Metamaterials with Nonlocal Interaction

被引:0
|
作者
Coppo, Francesco [1 ]
Mezzani, Federica [1 ]
Pensalfini, Sara [1 ]
Carcaterra, Antonio [1 ]
机构
[1] Sapienza Univ Rome, Dept Mech & Aerosp Engn, Rome, Italy
关键词
Elastic metamaterials; Nonlinear; Wave stopping; Negative group velocity; Long-range interactions; DISPERSION;
D O I
10.1007/978-3-030-34724-6_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper presents a numerical investigation of an elastic metamaterial, i.e., a one-dimensional elastic waveguide, equipped with nonlocal (long-range) and nonlinear interactions. The dynamic behavior of the newly defined structure is described by nonlinear integro-differential equation of motion. Numerical simulations, comparing the linearized model and the nonlinear one, unveil the arising of wave-stopping and backward propagation phenomena.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [1] Nonlocal homogenization for nonlinear metamaterials
    Gorlach, Maxim A.
    Voytova, Tatiana A.
    Lapine, Mikhail
    Kivshar, Yuri S.
    Belov, Pavel A.
    PHYSICAL REVIEW B, 2016, 93 (16)
  • [2] NUMERICAL SIMULATIONS OF NONLOCAL CONVECTION
    XIONG, DR
    ASTRONOMY & ASTROPHYSICS, 1989, 213 (1-2) : 176 - 182
  • [3] A numerical model for the nonlinear interaction of elastic waves with cracks
    Rusmanugroho, Herurisa
    Malcolm, Alison
    Darijani, Meghdad
    WAVE MOTION, 2020, 92
  • [4] Arrest behavior of local resonators connected by nonlocal interaction in elastic wave metamaterials with machine learning prediction
    Zhang, Xuan
    Wang, Yi-Ze
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2025, 188
  • [5] Numerical modeling of nonlinear interaction of elastic shell with gas flow
    Ilgamov, MA
    Tukmakov, AL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1995, (03): : 3 - 9
  • [6] On nonlinear deformations of nonlocal elastic rods
    Lembo, Marzio
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 90 : 215 - 227
  • [7] NONLINEAR SCATTERING WITH NONLOCAL INTERACTION
    NAWA, H
    OZAWA, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (02) : 259 - 275
  • [8] Combinational design of linear and nonlinear elastic metamaterials
    Yu, Miao
    Fang, Xin
    Yu, Dianlong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 199
  • [9] Nonlinear effects in magneto-elastic metamaterials
    Shadrivov, Ilya
    2015 IEEE 4TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2015, : 401 - 402
  • [10] Advances in nonlinear acoustic/elastic metamaterials and metastructures
    Fang, Xin
    Lacarbonara, Walter
    Cheng, Li
    NONLINEAR DYNAMICS, 2024,