Quantum fields with noncommutative target spaces

被引:20
|
作者
Balachandran, A. P. [1 ]
Queiroz, A. R. [2 ]
Marques, A. M. [3 ]
Teotonio-Sobrinho, P. [3 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Brasilia, Ctr Int Fis Mat Condensada, BR-04667 Brasilia, SP, Brazil
[3] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 10期
关键词
D O I
10.1103/PhysRevD.77.105032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quantum field theories (QFT's) on noncommutative spacetimes are currently under intensive study. Usually such theories have world sheet noncommutativity. In the present work, instead, we study QFT's with commutative world sheet and noncommutative target space. Such noncommutativity can be interpreted in terms of twisted statistics and is related to earlier work of Oeckl [R. Oeckl, Commun. Math. Phys. 217, 451 (2001)], and others [A. P. Balachandran, G. Mangano, A. Pinzul, and S. Vaidya, Int. J. Mod. Phys. A 21, 3111 (2006); A. P. Balachandran, A. Pinzul, and B. A. Qureshi, Phys. Lett. B 634,434 (2006); A.P. Balachandran, A. Pinzul, B.A. Qureshi, and S. Vaidya, arXiv:hep-th/0608138; A.P. Balachandran, T. R. Govindarajan, G. Mangano, A. Pinzul, B.A. Qureshi, and S. Vaidya, Phys. Rev. D 75, 045009 (2007); A. Pinzul, Int. J. Mod. Phys. A 20, 6268 (2005); G. Fiore and J. Wess, Phys. Rev. D 75, 105022 (2007); Y. Sasai and N. Sasakura, Prog. Theor. Phys. 118, 785 (2007)]. The twisted spectra of their free Hamiltonians has been found earlier by Carmona et al. [J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, Phys. Lett. B 565, 222 (2003); J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, J. High Energy Phys. 03 (2003) 058]. We review their derivation and then compute the partition function of one such typical theory. It leads to a deformed blackbody spectrum, which is analyzed in detail. The difference between the usual and the deformed blackbody spectrum appears in the region of high frequencies. Therefore we expect that the deformed blackbody radiation may potentially be used to compute a Greisen-Zatsepin-Kuzmin cutoff which will depend on the noncommutative parameter theta.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] CLASSICAL MECHANICS AND QUANTUM FIELDS IN NONCOMMUTATIVE PHASE SPACES
    Abreu, Everton M. C.
    Neves, Mario J.
    Nikoofard, Vahid
    [J]. ACTA PHYSICA POLONICA B, 2017, 48 (04): : 773 - 792
  • [2] Noncommutative spaces and quantum groups
    Wess, J
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (1-3): : 233 - 240
  • [3] Quantum fields and noncommutative spacetime
    Fredenhagen, K
    [J]. NONCOMMUTATIVE GEOMETRY AND THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS, 2002, 596 : 271 - 277
  • [4] Quantum Euclidean spaces with noncommutative derivatives
    Gao, Li
    Junge, Marius
    McDonald, Edward
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (01) : 153 - 213
  • [5] Quantum field theory on noncommutative spaces
    Szabo, RJ
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 378 (04): : 207 - 299
  • [6] Quantum Differentiability on Noncommutative Euclidean Spaces
    McDonald, Edward
    Sukochev, Fedor
    Xiong, Xiao
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (02) : 491 - 542
  • [7] Quantum Differentiability on Noncommutative Euclidean Spaces
    Edward McDonald
    Fedor Sukochev
    Xiao Xiong
    [J]. Communications in Mathematical Physics, 2020, 379 : 491 - 542
  • [8] Covariant quantum fields on noncommutative spacetimes
    A. P. Balachandran
    A. Ibort
    G. Marmo
    M. Martone
    [J]. Journal of High Energy Physics, 2011
  • [9] Magnetic fields in noncommutative quantum mechanics
    Delduc, F.
    Duret, Q.
    Gieres, F.
    Lefrancois, M.
    [J]. INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008, 103
  • [10] Spinor Representation of Electromagnetic Fields on Noncommutative Spaces
    Liangzhong Hu
    Adonai S. Sant'Anna
    [J]. International Journal of Theoretical Physics, 2003, 42 : 499 - 506