An inverse wave source problem

被引:3
|
作者
El Badia, A [1 ]
Ha-Duong, T [1 ]
机构
[1] Univ Technol Compiegne, Equipe Math Appl, F-60205 Compiegne, France
关键词
D O I
10.1016/S0764-4442(01)01966-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note is concerned with an inverse point wave source problem in a bounded domain Omega from boundary observations. Assuming that all point sources vanish after a certain time T-1, we first prove an identifiability result provided that some condition is satisfied between the time T-1, the observation time T and the observation domain on the boundary. This condition is reduced to the inequality T > T-1 + diam(Omega) when the observation domain is the whole boundary of Omega. In this case, we propose an algebraic method to identify, the point sour ces completely. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1005 / 1010
页数:6
相关论文
共 50 条
  • [1] An inverse source problem for the wave equation
    Ton, BA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (03) : 269 - 284
  • [2] On the Inverse Source Problem for the Wave Equation
    Demchenko M.N.
    [J]. Journal of Mathematical Sciences, 2017, 224 (1) : 69 - 78
  • [3] AN INVERSE SOURCE PROBLEM FOR THE STOCHASTIC WAVE EQUATION
    Feng, Xiaoli
    Zhao, Meixia
    Li, Peijun
    Wang, Xu
    [J]. INVERSE PROBLEMS AND IMAGING, 2022, 16 (02) : 397 - 415
  • [4] Inverse Problem for the Wave Equation with a White Noise Source
    Tapio Helin
    Matti Lassas
    Lauri Oksanen
    [J]. Communications in Mathematical Physics, 2014, 332 : 933 - 953
  • [5] Uniqueness along a line for an inverse wave source problem
    Cheng, J
    Ding, GH
    Yamamoto, M
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) : 2055 - 2069
  • [6] An inverse source problem for a damped wave equation with memory
    Seliga, Lukas
    Slodicka, Marian
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (02): : 111 - 122
  • [7] An Inverse Random Source Problem for the Biharmonic Wave Equation
    Li, Peijun
    Wang, Xu
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03): : 949 - 974
  • [8] Inverse Problem for the Wave Equation with a White Noise Source
    Helin, Tapio
    Lassas, Matti
    Oksanen, Lauri
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (03) : 933 - 953
  • [9] Inverse moving point source problem for the wave equation
    Al Jebawy, Hanin
    Elbadia, Abdellatif
    Triki, Faouzi
    [J]. INVERSE PROBLEMS, 2022, 38 (12)
  • [10] INVERSE SOURCE PROBLEM FOR WAVE EQUATION AND GPR DATA INTERPRETATION PROBLEM
    Mukanova, B. G.
    Romanov, V. G.
    [J]. EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2016, 4 (03): : 15 - 28