Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion

被引:8
|
作者
Vaithiyanathan, Shanthi [1 ]
Chandrasekaran, Karthikeyan [1 ,2 ]
Barik, R. C. [1 ]
机构
[1] Cent Electrochem Res Inst, CSIR, Corros & Mat Protect Div, Karaikkudi 630006, Tamil Nadu, India
[2] Cent Electrochem Res Inst, CSIR, Acad Sci & Innovat Res, Karaikkudi 630006, Tamil Nadu, India
关键词
Polyalthia longifolia; Sulfate-reducing bacteria; Biocide; Microbial corrosion; Transmission electron microscopy; MILD-STEEL; CARBON-STEEL; HYDROCHLORIC-ACID; IRON CORROSION; PEEL EXTRACT; INHIBITION; SURFACE;
D O I
10.1007/s13205-018-1513-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the present investigation, Polyalthia longifolia plant extract (PLAE) was used as biocide to control corrosion in the presence of sulfate-reducing bacteria (SRB). Transmission electron microscopy showed the damage of SRB outer cell membrane which lead to cell destruction and disturbed membrane permeability. The scanning electron microscopy also confirmed the cell shrinkage due to green biocide, and energy-dispersive Fourier transform infra-red spectroscopy indicated the decrease in sulfide concentration in the presence of biocide. Potentiodynamic polarization of mild steel showed the lower in corrosion rate due to the decrease in cathodic reduction kinetics of SRB in the presence of biocide PLAE. The gravimetric mass loss also showed corrosion rate dropped from 0.064 millimeter per year (mm/year) to 0.013mm/year with and without biocide. The present study showed that P. longifolia extract could be a novel biocide against the growth of the SRB to control corrosion in oil and gas industries.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion
    Shanthi Vaithiyanathan
    Karthikeyan Chandrasekaran
    R. C. Barik
    3 Biotech, 2018, 8
  • [2] Corrosion of 907 Steel Influenced by Sulfate-Reducing Bacteria
    Juna Chen
    Jiajia Wu
    Peng Wang
    Dun Zhang
    Shiqiang Chen
    Faqi Tan
    Journal of Materials Engineering and Performance, 2019, 28 : 1469 - 1479
  • [3] MODELING OF ANAEROBIC CORROSION INFLUENCED BY SULFATE-REDUCING BACTERIA
    PENG, CG
    SUEN, SY
    PARK, JK
    WATER ENVIRONMENT RESEARCH, 1994, 66 (05) : 707 - 715
  • [4] Corrosion of 907 Steel Influenced by Sulfate-Reducing Bacteria
    Chen, Juna
    Wu, Jiajia
    Wang, Peng
    Zhang, Dun
    Chen, Shiqiang
    Tan, Faqi
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (03) : 1469 - 1479
  • [5] Correction to: Corrosion of 907 Steel Influenced by Sulfate-Reducing Bacteria
    Juna Chen
    Jiajia Wu
    Peng Wang
    Dun Zhang
    Shiqiang Chen
    Faqi Tan
    Journal of Materials Engineering and Performance, 2019, 28 : 5913 - 5913
  • [7] MODELING OF ANAEROBIC CORROSION INFLUENCED BY SULFATE-REDUCING BACTERIA - CLOSURE
    PARK, JK
    PONG, CG
    WATER ENVIRONMENT RESEARCH, 1995, 67 (05) : 876 - 877
  • [8] Microbiologically influenced corrosion of stainless steel independent of sulfate-reducing bacteria
    Wakai, Satoshi
    Eno, Nanami
    Mizukami, Hirotaka
    Sunaba, Toshiyuki
    Miyanaga, Kazuhiko
    Miyano, Yasuyuki
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [9] ELECTROCHEMICAL MECHANISMS OF CORROSION INFLUENCED BY SULFATE-REDUCING BACTERIA IN AQUATIC SYSTEMS
    PENG, CG
    PARK, JK
    WATER RESEARCH, 1994, 28 (08) : 1681 - 1692
  • [10] Electrochemical analysis of the microbiologically influenced corrosion of steels by sulfate-reducing bacteria
    Moon, Kyung-Man
    Cho, Hwang-Rae
    Lee, Myung-Hoon
    Shin, Sung-Kyu
    Koh, Sung-Cheol
    METALS AND MATERIALS INTERNATIONAL, 2007, 13 (03) : 211 - 216