Variable and subset selection in PLS regression

被引:222
|
作者
Höskuldsson, A [1 ]
机构
[1] Tech Univ Denmark, DK-2800 Lyngby, Denmark
关键词
variable selection; partial least squares (PLS); principal component analysis (PCA); H-principle; stepwise regression; Orthogonal Scatter Correction (OSC);
D O I
10.1016/S0169-7439(00)00113-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than obtained by different methods. We also present an approach to orthogonal scatter correction. The procedures and comparisons are applied to industrial data. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 50 条
  • [1] Evolutionary variable selection in regression and PLS analyses
    Kubinyi, H
    [J]. JOURNAL OF CHEMOMETRICS, 1996, 10 (02) : 119 - 133
  • [2] A Backward Variable Selection method for PLS regression (BVSPLS)
    Pierna, Juan Antonio Fernandez
    Abbas, Ouissam
    Baeten, Vincent
    Dardenne, Pierre
    [J]. ANALYTICA CHIMICA ACTA, 2009, 642 (1-2) : 89 - 93
  • [3] lmSubsets: Exact Variable-Subset Selection in Linear Regression for R
    Hofmann, Marc
    Gatu, Cristian
    Kontoghiorghes, Erricos J.
    Colubi, Ana
    Zeileis, Achim
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (03):
  • [4] Application of the modelling power approach to variable subset selection for GA-PLS QSAR models
    Sagrado, Salvador
    Cronin, Mark T. D.
    [J]. ANALYTICA CHIMICA ACTA, 2008, 609 (02) : 169 - 174
  • [5] Subset selection in poisson regression
    Sakate D.M.
    Kashid D.N.
    Shirke D.T.
    [J]. Journal of Statistical Theory and Practice, 2011, 5 (2) : 207 - 219
  • [6] Validation tools for variable subset regression
    Knut Baumann
    Nikolaus Stiefl
    [J]. Journal of Computer-Aided Molecular Design, 2004, 18 : 549 - 562
  • [7] Validation tools for variable subset regression
    Baumann, K
    Stiefl, N
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2004, 18 (7-9) : 549 - 562
  • [8] Variable Selection Method of NIR Spectroscopy Based on Least Angle Regression and GA-PLS
    Yan Sheng-ke
    Yang Hui-hua
    Hu Bai-chao
    Ren Chao-chao
    Liu Zhen-bing
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37 (06) : 1733 - 1738
  • [9] Variable selection in linear regression models: Choosing the best subset is not always the best choice
    Hanke, Moritz
    Dijkstra, Louis
    Foraita, Ronja
    Didelez, Vanessa
    [J]. BIOMETRICAL JOURNAL, 2023,
  • [10] Variable selection in linear regression models: Choosing the best subset is not always the best choice
    Hanke, Moritz
    Dijkstra, Louis
    Foraita, Ronja
    Didelez, Vanessa
    [J]. BIOMETRICAL JOURNAL, 2024, 66 (01)