Monotone maps on dendrites and their induced maps

被引:7
|
作者
Abouda, Haithem [1 ]
Naghmouchi, Issam [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dept Math, Jarzouna 7021, Tunisia
关键词
omega-Limit set; Monotone dendrite maps; Induced maps; omega-Chaos; Periodic points; Regularly recurrent points; ENTROPY; CHAOS; POINTS; SET;
D O I
10.1016/j.topol.2016.02.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A continuum X is a dendrite if it is locally connected and contains no simple closed curve, a self mapping f of X is called monotone if the preimage of any connected subset of X is connected. If X is a dendrite and f : X -> X is a monotone continuous map then we prove that any omega-limit set is approximated by periodic orbits and the family of all omega-limit sets is closed with respect to the Hausdorff metric. Second, we prove that the equality between the closure of the set of periodic points, the set of regularly recurrent points and the union of all omega-limit sets holds for the induced maps F-n(f) : F-n(X) -> F-n(X) and T-n(f) : T-n(X) -> T-n(X) where F-n(X) denotes the family of finite subsets of X with at most n points, T-n(X) denotes the family of subtrees of X with at most n endpoints and F-n(f) = 2(vertical bar Fn(X))(f), T-n(f) = 2(vertical bar Tn(X))(f), in particular there is no Li-Yorke pair for these maps. However, we will show that this rigidity in general is not exhibited by the induced map C(f) : C(X) -> C(X) where C(X) denotes the family of sub -continua of X and C(f) = 2(vertical bar C(X))(f), we will discuss an example of a homeomorphism g on a dendrite S which is dynamically simple whereas its induced map C(g) is omega-chaotic and has infinite topological entropy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
  • [1] The dynamics of monotone maps of dendrites
    Efremova, LS
    Makhrova, EN
    [J]. SBORNIK MATHEMATICS, 2001, 192 (5-6) : 807 - 821
  • [2] On the set of non-wandering points of monotone maps on local dendrites
    Makhrova, E. N.
    Vaniukova, K. S.
    [J]. NOMA15 INTERNATIONAL WORKSHOP ON NONLINEAR MAPS AND APPLICATIONS, 2016, 692
  • [3] Equicontinuity of maps on dendrites
    Camargo, Javier
    Rincon, Michael
    Uzcategui, Carlos
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 126 : 1 - 6
  • [4] MONOTONE EXTENSIONS OF MAPS
    KOHLI, JK
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A293 - A293
  • [5] Monotone functions and maps
    Saugata Basu
    Andrei Gabrielov
    Nicolai Vorobjov
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2013, 107 : 5 - 33
  • [6] MONOTONE MAPS AND HYPERSPACES
    LAU, AYW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A180 - A180
  • [7] Monotone Maps of the Circle
    Zakeri, Saeed
    [J]. ROTATION SETS AND COMPLEX DYNAMICS, 2018, 2214 : 1 - 15
  • [8] Monotone maps: a review
    Hirsch, MW
    Smith, H
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (4-5) : 379 - 398
  • [9] Monotone functions and maps
    Basu, Saugata
    Gabrielov, Andrei
    Vorobjov, Nicolai
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (01) : 5 - 33
  • [10] Equicontinuity of Maps on Local Dendrites
    Abdelli, Hafedh
    Askri, Ghassen
    Kedim, Imed
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)