CHARACTERISTIC CLASSES OF A∞-ALGEBRAS

被引:0
|
作者
Hamilton, Alastair [1 ]
Lazarev, Andrey [2 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
A(infinity)-algebra; graph homology; topological conformal field theory; noncommutative and symplectic geometry; Feynman calculus;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A standard combinatorial construction, due to Kontsevich, associates to any A(infinity)-algebra with an invariant inner product, an inhomogeneous class in the cohomology of the moduli spaces of Riemann surfaces with marked points. We propose an alternative version of this construction based on noncommutative geometry and use it to prove that homotopy equivalent algebras give rise to the same cohomology classes. Along the way we re-prove Kontsevich's theorem relating graph homology to the homology of certain infinite-dimensional Lie algebras. An application to topological conformal field theories is given.
引用
收藏
页码:65 / 111
页数:47
相关论文
共 50 条