Vortex methods for incompressible flow simulations on the GPU

被引:17
|
作者
Rossinelli, Diego [1 ]
Koumoutsakos, Petros [1 ]
机构
[1] ETH, Chair Computat Sci, CH-8092 Zurich, Switzerland
来源
VISUAL COMPUTER | 2008年 / 24卷 / 7-9期
关键词
vortex methods; particles; fluids; graphics processors;
D O I
10.1007/s00371-008-0250-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a remeshed vortex particle method for incompressible flow simulations on GPUs. The particles are convected in a Lagrangian frame and are periodically reinitialized on a regular grid. The grid is used in addition to solve for the velocity-vorticity Poisson equation and for the computation of the diffusion operators. In the present GPU implementation of particle methods, the remeshing and the solution of the Poisson equation rely on fast and efficient mesh-particle interpolations. We demonstrate that particle remeshing introduces minimal artificial dissipation, enables a faster computation of differential operators on particles over grid-free techniques and can be efficiently implemented on GPUs. The results demonstrate that, contrary to common practice in particle simulations, it is necessary to remesh the (vortex) particle locations in order to solve accurately the equations they discretize, without compromising the speed of the method. The present method leads to simulations of incompressible vortical flows on GPUs with unprecedented accuracy and efficiency.
引用
收藏
页码:699 / 708
页数:10
相关论文
共 50 条
  • [1] Vortex methods for incompressible flow simulations on the GPU
    Diego Rossinelli
    Petros Koumoutsakos
    [J]. The Visual Computer, 2008, 24 : 699 - 708
  • [2] ANALYSIS OF VORTEX METHODS FOR INCOMPRESSIBLE-FLOW
    BEALE, JT
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (5-6) : 1009 - 1011
  • [3] GPU accelerated simulations of bluff body flows using vortex particle methods
    Rossinelli, Diego
    Bergdorf, Michael
    Cottet, Georges-Henri
    Koumoutsakos, Petros
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) : 3316 - 3333
  • [4] Blending finite-difference and vortex methods for incompressible flow computations
    Ould-Salihi, ML
    Cottet, GH
    El Hamraoui, M
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05): : 1655 - 1674
  • [5] The VM2D Open Source Code for Incompressible Flow Simulation by Using Meshless Lagrangian Vortex Methods on CPU and GPU
    Kuzmina, Kseniia S.
    Marchevsky, Ilia K.
    Ryatina, Evgeniya P.
    [J]. 2019 IVANNIKOV MEMORIAL WORKSHOP (IVMEM 2019), 2019, : 86 - 92
  • [6] Vortex Sheet Intensity Computation in Incompressible Flow Simulation Around an Airfoil by Using Vortex Methods
    Kuzmina K.S.
    Marchevskii I.K.
    Moreva V.S.
    [J]. Mathematical Models and Computer Simulations, 2018, 10 (3) : 276 - 287
  • [7] An assessment of artificial compressibility and pressure projection methods for incompressible flow simulations
    Kwak, D
    Kiris, C
    Dacles-Mariani, J
    [J]. SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS, 1998, 515 : 177 - 182
  • [8] Aspects of unsteady incompressible flow simulations
    Kiris, C
    Kwak, D
    [J]. COMPUTERS & FLUIDS, 2002, 31 (4-7) : 627 - 638
  • [9] A GPU accelerated discontinuous Galerkin incompressible flow solver
    Karakus, A.
    Chalmers, N.
    Swirydowicz, K.
    Warburton, T.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 390 : 380 - 404
  • [10] Incompressible Flow Simulation on Vortex Segment Clouds
    Xiong, Shiying
    Tao, Rui
    Zhang, Yaorui
    Feng, Fan
    Zhu, Bo
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):