A direct proof of Jauregui-Tsallis' conjecture

被引:8
|
作者
Plastino, A. [1 ]
Rocca, M. C. [1 ]
机构
[1] Univ Nacl La Plata, Dept Fis, Fac Ciencias Exactas, CCT,IFLP,CONICET, RA-1900 La Plata, Argentina
关键词
functional analysis; INFORMATION-THEORY;
D O I
10.1063/1.3652629
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give here the direct proof of a recent conjecture of Jauregui and Tsallis about a new representation of Dirac's delta distribution by means of q-exponentials. The proof is based on the use of tempered ultradistributions' theory. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3652629]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On formulas for π experimentally conjectured by Jauregui-Tsallis
    Amdeberhan, Tewodros
    Borwein, David
    Borwein, Jonathan M.
    Straub, Armin
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [2] A direct proof of the Coase conjecture
    Thepot, J
    JOURNAL OF MATHEMATICAL ECONOMICS, 1998, 29 (01) : 57 - 66
  • [3] Direct proof for trefethen's conjecture
    Aptekarev, A.I.
    Lecture Notes in Mathematics, 1993, 1550
  • [4] A direct proof of AGT conjecture at β = 1
    A. Mironov
    A. Morozov
    Sh. Shakirov
    Journal of High Energy Physics, 2011
  • [5] A direct proof of AGT conjecture at β=1
    Mironov, A.
    Morozov, A.
    Shakirov, Sh.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (02):
  • [6] UTILITY MEASUREMENT - A DIRECT PROOF OF LANGES CONJECTURE
    BASU, K
    ECONOMICS LETTERS, 1984, 15 (3-4) : 219 - 221
  • [7] A direct proof of Brannan's conjecture for β=1
    Barnard, Roger W.
    Richards, Kendall C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
  • [8] Proof of a conjecture concerning the direct product of bipartite graphs
    Hammack, Richard H.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1114 - 1118
  • [9] On conjecture and proof
    Gilman, JJ
    MRS BULLETIN, 1997, 22 (11) : 9 - 9
  • [10] A Proof of the Molecular Conjecture
    Katoh, Naoki
    Tanigawa, Shin-ichi
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 296 - 305