CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver

被引:14
|
作者
Kaltenbacher, Thorsten [1 ,2 ]
Loeprich, Jessica [1 ,2 ]
Maresch, Roman [1 ,2 ]
Weber, Julia [1 ,2 ]
Mueller, Sebastian [1 ,2 ]
Oellinger, Rupert [1 ,2 ]
Gross, Nina [1 ,2 ]
Griger, Joscha [1 ,2 ]
Kraetzig, Niklas de Andrade [1 ,2 ]
Avramopoulos, Petros [3 ,4 ]
Ramanujam, Deepak [3 ,4 ]
Brummer, Sabine [3 ]
Widholz, Sebastian A. [1 ,2 ]
Baerthel, Stefanie [2 ,5 ]
Falcomata, Chiara [2 ,5 ]
Pfaus, Anja [1 ,2 ]
Alnatsha, Ahmed [6 ]
Mayerle, Julia [6 ,7 ]
Schmidt-Supprian, Marc [2 ,7 ,8 ]
Reichert, Maximilian [9 ]
Schneider, Gunter [9 ]
Ehmer, Ursula [9 ]
Braun, Christian J. [1 ,10 ,11 ]
Saur, Dieter [2 ,5 ,7 ,9 ]
Engelhardt, Stefan [3 ,4 ]
Rad, Roland [1 ,2 ,7 ,9 ]
机构
[1] Tech Univ Munich, Sch Med, Inst Mol Oncol & Funct Genom, Munich, Germany
[2] Tech Univ Munich, Ctr Translat Canc Res TranslaTUM, Sch Med, Munich, Germany
[3] Tech Univ Munich, Inst Pharmacol & Toxicol, Munich, Germany
[4] DZHK German Ctr Cardiovasc Res, Partner Site Munich Heart Alliance, Munich, Germany
[5] Tech Univ Munich, Inst Expt Canc Therapy, Munich, Germany
[6] Ludwig Maximilians Univ Munchen, Dept Med 2, Univ Hosp, Munich, Germany
[7] German Canc Res Ctr, German Canc Consortium DKTK, Heidelberg, Germany
[8] Tech Univ Munich, Sch Med, Inst Expt Hematol, Munich, Germany
[9] Tech Univ Munich, Sch Med, Dept Med 2, Klinikum Rechts Isar, Munich, Germany
[10] Ludwig Maximilians Univ Munchen, Dr von Hauner Childrens Hosp, Dept Pediat, Univ Hosp, Munich, Germany
[11] German Canc Res Ctr, Hopp Childrens Canc Ctr Heidelberg KiTZ, Heidelberg, Germany
基金
欧洲研究理事会;
关键词
RECOMBINANT ADENOASSOCIATED VIRUS; IN-VIVO TRANSDUCTION; RATE-LIMITING STEP; GENE-TRANSFER; LENTIVIRAL VECTOR; ADENOVIRAL VECTORS; CHROMOSOMAL REARRANGEMENTS; IMMUNE-RESPONSES; HEMOPHILIA-B; SGRNA DESIGN;
D O I
10.1038/s41596-021-00677-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genetically engineered mouse models (GEMMs) transformed the study of organismal disease phenotypes but are limited by their lengthy generation in embryonic stem cells. Here, we describe methods for rapid and scalable genome engineering in somatic cells of the liver and pancreas through delivery of CRISPR components into living mice. We introduce the spectrum of genetic tools, delineate viral and nonviral CRISPR delivery strategies and describe a series of applications, ranging from gene editing and cancer modeling to chromosome engineering or CRISPR multiplexing and its spatio-temporal control. Beyond experimental design and execution, the protocol describes quantification of genetic and functional editing outcomes, including sequencing approaches, data analysis and interpretation. Compared to traditional knockout mice, somatic GEMMs face an increased risk for mouse-to-mouse variability because of the higher experimental demands of the procedures. The robust protocols described here will help unleash the full potential of somatic genome manipulation. Depending on the delivery method and envisaged application, the protocol takes 3-5 weeks. The authors provide protocols for rapid and scalable genome engineering in somatic cells of the liver and pancreas through both viral and nonviral delivery of CRISPR components into living mice.
引用
收藏
页码:1142 / 1188
页数:47
相关论文
共 50 条
  • [1] CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver
    Thorsten Kaltenbacher
    Jessica Löprich
    Roman Maresch
    Julia Weber
    Sebastian Müller
    Rupert Oellinger
    Nina Groß
    Joscha Griger
    Niklas de Andrade Krätzig
    Petros Avramopoulos
    Deepak Ramanujam
    Sabine Brummer
    Sebastian A. Widholz
    Stefanie Bärthel
    Chiara Falcomatà
    Anja Pfaus
    Ahmed Alnatsha
    Julia Mayerle
    Marc Schmidt-Supprian
    Maximilian Reichert
    Günter Schneider
    Ursula Ehmer
    Christian J. Braun
    Dieter Saur
    Stefan Engelhardt
    Roland Rad
    Nature Protocols, 2022, 17 : 1142 - 1188
  • [2] CRISPR mediated somatic cell genome engineering in the chicken
    Veron, Nadege
    Qu, Zhengdong
    Kipen, Phoebe A. S.
    Hirst, Claire E.
    Marcelle, Christophe
    DEVELOPMENTAL BIOLOGY, 2015, 407 (01) : 68 - 74
  • [3] Engineering CRISPR mouse models of cancer
    Weber, Julia
    Rad, Roland
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2019, 54 : 88 - 96
  • [4] Genome-scale CRISPR screening in a mouse liver
    Keys, Heather R.
    Knouse, Kristin A.
    CELL GENOMICS, 2022, 2 (12):
  • [5] Efficient mouse genome engineering by CRISPR-EZ technology
    Modzelewski, Andrew J.
    Chen, Sean
    Willis, Brandon J.
    Lloyd, K. C. Kent
    Wood, Joshua A.
    He, Lin
    NATURE PROTOCOLS, 2018, 13 (06) : 1253 - 1274
  • [6] Efficient mouse genome engineering by CRISPR-EZ technology
    Andrew J Modzelewski
    Sean Chen
    Brandon J Willis
    K C Kent Lloyd
    Joshua A Wood
    Lin He
    Nature Protocols, 2018, 13 : 1253 - 1274
  • [7] Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila
    Port, Fillip
    Chen, Hui-Min
    Lee, Tzumin
    Bullock, Simon L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (29) : E2967 - E2976
  • [8] GONAD and Easy (Isi)-CRISPR: novel mouse genome engineering tools
    Ohtsuka, Masato
    Miura, Hiromi
    Takahashi, Gou
    Quadros, Rolen
    Sato, Masahiro
    Gurumurthy, Channabasavaiah B.
    TRANSGENIC RESEARCH, 2016, 25 (02) : 214 - 215
  • [9] Engineering the mouse genome using CRISPR/Cas9 technology
    Mianne, Joffrey
    Caulder, Adam
    Codner, Gemma
    King, Ruairidh
    Fell, Rachel
    Maritati, Marina
    Allan, Alasdair
    Jarrold, James
    Fray, Martin
    Gardiner, Wendy
    Wells, Sara
    Teboul, Lydia
    TRANSGENIC RESEARCH, 2016, 25 (02) : 251 - 251
  • [10] Application of CRISPR-mediated genome engineering in cancer research
    Sayin, Volkan I.
    Papagiannakopoulos, Thales
    CANCER LETTERS, 2017, 387 : 10 - 17