ON THE ARITHMETIC PROCESSES RELATED TO DIVISORS

被引:4
|
作者
de la Breteche, R. [1 ]
Tenenbaum, G. [2 ]
机构
[1] Univ Paris Diderot Paris 7, Sorbonne Paris Cite, UMR 7586, Inst Math Jussieu PRG, Case 7012, F-75013 Paris, France
[2] Univ Lorraine, Inst Elie Cartan, BP 70239, F-54506 Vandoeuvre Les Nancy, France
关键词
Arc-sine law; arithmetic model; arithmetic process; Dirichlet laws; divisors; INVARIANCE-PRINCIPLE; ADDITIVE-FUNCTIONS; NATURAL DIVISORS; THEOREM;
D O I
10.1017/apr.2016.42
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For natural integer n, let D, denote the random variable taking the values log d for d dividing n with uniform probability 1/iota(n). Then t -> P(D-n <= n(t)) (0 <= t <= 1) is an arithmetic process with respect to the uniform probability over the first N integers. It is known from previous works that this process converges to a limit law and that the same holds for various extensions. We investigate the generalized moments of arbitrary orders for the limit laws. We also evaluate the mean value of the two-dimensional distribution function P(D-n <= n(u), D-{n/Dn} <= n(u)).
引用
收藏
页码:63 / 76
页数:14
相关论文
共 50 条