A Globally Asymptotically Stable Polynomial Vector Field with no Polynomial Lyapunov Function

被引:0
|
作者
Ahmadi, Amir Ali [1 ]
Krstic, Miroslav [1 ]
Parrilo, Pablo A. [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a simple, explicit example of a two-dimensional polynomial vector field that is globally asymptotically stable but does not admit a polynomial Lyapunov function.
引用
收藏
页码:7579 / +
页数:2
相关论文
共 50 条
  • [1] A globally asymptotically stable polynomial vector field with rational coefficients and no local polynomial Lyapunov function
    Ahmadi, Amir Ali
    El Khadir, Bachir
    [J]. SYSTEMS & CONTROL LETTERS, 2018, 121 : 50 - 53
  • [2] On the Existence of Polynomial Lyapunov Functions for Rationally Stable Vector Fields
    Leth, Tobias
    Wisniewski, Rafal
    Sloth, Christoffer
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [3] Linear relaxations of polynomial positivity for polynomial Lyapunov function synthesis
    Ben Sassi, Mohamed Amin
    Sankaranarayanan, Sriram
    Chen, Xin
    Abraham, Erika
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2016, 33 (03) : 723 - 756
  • [4] Stabilization via polynomial Lyapunov function
    Cheng, DZ
    [J]. NEW TRENDS IN NONLINEAR DYNAMICS AND CONTROL, AND THEIR APPLICATIONS, 2003, 295 : 161 - 173
  • [5] STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
    Pessoa, Claudio
    Sotomayor, Jorge
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [6] Design of globally asymptotically stable nonlinear observers using Lyapunov functions
    Tibken, B
    [J]. PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 1981 - 1984
  • [7] Stabilization and Robust Stabilization of Polynomial Fuzzy Systems: A Piecewise Polynomial Lyapunov Function Approach
    Ashar, Alissa Ully
    Tanaka, Motoyasu
    Tanaka, Kazuo
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (05) : 1423 - 1438
  • [8] Stabilization and Robust Stabilization of Polynomial Fuzzy Systems: A Piecewise Polynomial Lyapunov Function Approach
    Alissa Ully Ashar
    Motoyasu Tanaka
    Kazuo Tanaka
    [J]. International Journal of Fuzzy Systems, 2018, 20 : 1423 - 1438
  • [9] Necessary Condition on Lyapunov Functions Corresponding to the Globally Asymptotically Stable Equilibrium Point
    Athalye, Chirayu D.
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1168 - 1173
  • [10] CONSTRUCTION OF A SMOOTH LYAPUNOV FUNCTION FOR AN ASYMPTOTICALLY STABLE SET
    NADZIEJA, T
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1990, 40 (02) : 195 - 199