Cycle length distributions in random permutations with diverging cycle weights

被引:6
|
作者
Dereich, Steffen [1 ]
Moerters, Peter [2 ]
机构
[1] Univ Munster, Inst Stat Math, D-48149 Munster, Germany
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
random permutations; random partitions; Bose-Einstein condensation; cycle structure; cycle weights; generalised Ewens distribution; gamma distribution; condensing wave; local limit theorem;
D O I
10.1002/rsa.20520
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the model of random permutations with diverging cycle weights, which was recently considered by Ercolani and Ueltschi, and others. Assuming only regular variation of the cycle weights we obtain a very precise local limit theorem for the size of a typical cycle, and use this to show that the empirical distribution of properly rescaled cycle lengths converges in probability to a gamma distribution.Copyright (c) 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46,635-650, 2015
引用
收藏
页码:635 / 650
页数:16
相关论文
共 50 条
  • [1] RANDOM PERMUTATIONS WITH CYCLE WEIGHTS
    Betz, Volker
    Ueltschi, Daniel
    Velenik, Yvan
    [J]. ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 312 - 331
  • [2] Cycle Structure of Random Permutations With Cycle Weights
    Ercolani, Nicholas M.
    Ueltschi, Daniel
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (01) : 109 - 133
  • [3] Random permutations with logarithmic cycle weights
    Robles, Nicolas
    Zeindler, Dirk
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 1991 - 2016
  • [4] Long cycle of random permutations with polynomially growing cycle weights
    Zeindler, Dirk
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2021, 58 (04) : 726 - 739
  • [5] The order of large random permutations with cycle weights
    Storm, Julia
    Zeindler, Dirk
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 34
  • [6] Spatial random permutations with small cycle weights
    Volker Betz
    Daniel Ueltschi
    [J]. Probability Theory and Related Fields, 2011, 149 : 191 - 222
  • [7] Spatial random permutations with small cycle weights
    Betz, Volker
    Ueltschi, Daniel
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2011, 149 (1-2) : 191 - 222
  • [8] Shift in Critical Temperature for Random Spatial Permutations with Cycle Weights
    Kerl, John
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (01) : 56 - 75
  • [9] Shift in Critical Temperature for Random Spatial Permutations with Cycle Weights
    John Kerl
    [J]. Journal of Statistical Physics, 2010, 140 : 56 - 75
  • [10] The limit shape of random permutations with polynomially growing cycle weights
    Cipriani, Alessandra
    Zeindler, Dirk
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (02): : 971 - 999