Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning

被引:6
|
作者
Dam, Tariq A. [1 ]
Roggeveen, Luca F. [1 ]
van Diggelen, Fuda [2 ]
Fleuren, Lucas M. [1 ]
Jagesar, Ameet R. [1 ]
Otten, Martijn [1 ]
de Vries, Heder J. [1 ]
Gommers, Diederik [3 ]
Cremer, Olaf L. [4 ]
Bosman, Rob J. [5 ]
Rigter, Sander [6 ]
Wils, Evert-Jan [7 ]
Frenzel, Tim [8 ]
Dongelmans, Dave A. [9 ]
de Jong, Remko [10 ]
Peters, Marco A. A. [11 ]
Kamps, Marlijn J. A. [12 ]
Ramnarain, Dharmanand [13 ]
Nowitzky, Ralph [14 ]
Nooteboom, Fleur G. C. A. [15 ]
de Ruijter, Wouter [16 ]
Urlings-Strop, Louise C. [17 ]
Smit, Ellen G. M. [18 ]
Mehagnoul-Schipper, D. Jannet [19 ]
Dormans, Tom [20 ]
de Jager, Cornelis P. C. [21 ]
Hendriks, Stefaan H. A. [22 ]
Achterberg, Sefanja [23 ]
Oostdijk, Evelien [24 ]
Reidinga, Auke C. [25 ]
Festen-Spanjer, Barbara [26 ]
Brunnekreef, Gert B. [27 ]
Cornet, Alexander D. [28 ]
van den Tempel, Walter [29 ]
Boelens, Age D. [30 ]
Koetsier, Peter [31 ]
Lens, Judith [32 ]
Faber, Harald J. [33 ]
Karakus, A. [34 ]
Entjes, Robert [35 ]
de Jong, Paul [36 ]
Rettig, Thijs C. D. [37 ]
Arbous, Sesmu [38 ]
Vonk, Sebastiaan J. J. [39 ]
Machado, Tomas [39 ]
Herter, Willem E. [39 ]
De Grooth, Harm-Jan [1 ]
Thoral, Patrick J. [1 ]
Girbes, Armand R. J. [1 ]
Hoogendoorn, Mark [2 ]
机构
[1] Vrije Univ, Dept Intens Care Med, Lab Crit Care Computat Intelligence, Amsterdam UMC,Amsterdam Med Data Sci, Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Fac Sci, Dept Comp Sci, Quantitat Data Analyt Grp, Amsterdam, Netherlands
[3] Erasmus MC, Dept Intens Care, Rotterdam, Netherlands
[4] UMC Utrecht, Intens Care, Utrecht, Netherlands
[5] OLVG, ICU, Amsterdam, Netherlands
[6] St Antonius Hosp, Dept Anesthesiol & Intens Care, Nieuwegein, Netherlands
[7] Franciscus Gasthuis & Vlietland, Dept Intens Care, Rotterdam, Netherlands
[8] Radboud Univ Nijmegen Med Ctr, Dept Intens Care Med, Nijmegen, Netherlands
[9] Amsterdam UMC, Dept Intens Care Med, Amsterdam, Netherlands
[10] Bovenij Ziekenhuis, Intens Care, Amsterdam, Netherlands
[11] Canisius Wilhelmina Ziekenhuis, Intens Care, Nijmegen, Netherlands
[12] Catharina Ziekenhuis Eindhoven, Intens Care, Eindhoven, Netherlands
[13] ETZ Tilburg, Dept Intens Care, Tilburg, Netherlands
[14] HagaZiekenhuis, Intens Care, The Hague, Netherlands
[15] Laurentius Ziekenhuis, Intens Care, Roermond, Netherlands
[16] Northwest Clin, Dept Intens Care Med, Alkmaar, Netherlands
[17] Reinier Graaf Gasthuis, Intens Care, Delft, Netherlands
[18] Spaarne Gasthuis, Intens Care, Haarlem En Hoofddorp, Netherlands
[19] VieCuri Med Ctr, Intens Care, Venlo, Netherlands
[20] Zuyderland MC, Intens Care, Heerlen, Netherlands
[21] Jeroen Bosch Ziekenhuis, Dept Intens Care, Den Bosch, Netherlands
[22] Albert Schweitzerziekenhuis, Intens Care, Dordrecht, Netherlands
[23] Haaglanden Med Ctr, ICU, The Hague, Netherlands
[24] Maasstad Ziekenhuis Rotterdam, ICU, Rotterdam, Netherlands
[25] Martiniziekenhuis, BWC, SEH, ICU, Groningen, Netherlands
[26] Ziekenhuis Gelderse Vallei, Intens Care, Ede, Netherlands
[27] Ziekenhuisgrp Twente, Dept Intens Care, Almelo, Netherlands
[28] Med Spectrum Twente, Dept Intens Care, Enschede, Netherlands
[29] Ikazia Ziekenhuis Rotterdam, Dept Intens Care, Rotterdam, Netherlands
[30] Antonius Ziekenhuis Sneek, Sneek, Netherlands
[31] Med Ctr Leeuwarden, Intens Care, Leeuwarden, Netherlands
[32] IJsselland Ziekenhuis, ICU, Capelle Aan Den Ijssel, Netherlands
[33] WZA, ICU, Assen, Netherlands
[34] Diakonessenhuis Hosp, Dept Intens Care, Utrecht, Netherlands
[35] Adrz, Dept Intens Care, Goes, Netherlands
[36] Slingeland Ziekenhuis, Dept Anesthesia & Intens Care, Doetinchem, Netherlands
[37] Amphia Ziekenhuis, Dept Anesthesiol Intens Care & Pain Med, Breda, Netherlands
[38] LUMC, Leiden, Netherlands
[39] Pacmed, Amsterdam, Netherlands
关键词
COVID-19; Mechanical ventilation; Acute respiratory distress syndrome;
D O I
10.1186/s13613-022-01070-0
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. Methods From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO2/FiO(2) ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO2/FiO(2) ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. Results The median duration of prone episodes was 17 h (11-20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO2/FiO(2) ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. Conclusions In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning
    Tariq A. Dam
    Luca F. Roggeveen
    Fuda van Diggelen
    Lucas M. Fleuren
    Ameet R. Jagesar
    Martijn Otten
    Heder J. de Vries
    Diederik Gommers
    Olaf L. Cremer
    Rob J. Bosman
    Sander Rigter
    Evert-Jan Wils
    Tim Frenzel
    Dave A. Dongelmans
    Remko de Jong
    Marco A. A. Peters
    Marlijn J. A. Kamps
    Dharmanand Ramnarain
    Ralph Nowitzky
    Fleur G. C. A. Nooteboom
    Wouter de Ruijter
    Louise C. Urlings-Strop
    Ellen G. M. Smit
    D. Jannet Mehagnoul-Schipper
    Tom Dormans
    Cornelis P. C. de Jager
    Stefaan H. A. Hendriks
    Sefanja Achterberg
    Evelien Oostdijk
    Auke C. Reidinga
    Barbara Festen-Spanjer
    Gert B. Brunnekreef
    Alexander D. Cornet
    Walter van den Tempel
    Age D. Boelens
    Peter Koetsier
    Judith Lens
    Harald J. Faber
    A. Karakus
    Robert Entjes
    Paul de Jong
    Thijs C. D. Rettig
    Sesmu Arbous
    Sebastiaan J. J. Vonk
    Tomas Machado
    Willem E. Herter
    Harm-Jan de Grooth
    Patrick J. Thoral
    Armand R. J. Girbes
    Mark Hoogendoorn
    [J]. Annals of Intensive Care, 12
  • [2] Efficiency of Prolonged Prone Positioning for Mechanically Ventilated Patients Infected with COVID-19
    Parker, Elizabeth M.
    Bittner, Edward A.
    Berra, Lorenzo
    Pino, Richard M.
    [J]. JOURNAL OF CLINICAL MEDICINE, 2021, 10 (13)
  • [3] Lung response to prone positioning in mechanically-ventilated patients with COVID-19
    Protti, Alessandro
    Santini, Alessandro
    Pennati, Francesca
    Chiurazzi, Chiara
    Ferrari, Michele
    Iapichino, Giacomo E.
    Carenzo, Luca
    Dalla Corte, Francesca
    Lanza, Ezio
    Martinetti, Nicolo
    Aliverti, Andrea
    Cecconi, Maurizio
    [J]. CRITICAL CARE, 2022, 26 (01)
  • [4] Prone Positioning in Mechanically Ventilated COVID-19 Patients: Timing of Initiation and Outcomes
    Jackson, Alexander
    Neyroud, Florence
    Barnsley, Josephine
    Hunter, Elsie
    Beecham, Ryan
    Radharetnas, Meiarasu
    Grocott, Michael P. W.
    Dushianthan, Ahilanandan
    [J]. JOURNAL OF CLINICAL MEDICINE, 2023, 12 (13)
  • [5] Lung response to prone positioning in mechanically-ventilated patients with COVID-19
    Alessandro Protti
    Alessandro Santini
    Francesca Pennati
    Chiara Chiurazzi
    Michele Ferrari
    Giacomo E. Iapichino
    Luca Carenzo
    Francesca Dalla Corte
    Ezio Lanza
    Nicolò Martinetti
    Andrea Aliverti
    Maurizio Cecconi
    [J]. Critical Care, 26
  • [6] Predicting Impact of Prone Position on Oxygenation in Mechanically Ventilated Patients with COVID-19
    Bell, Jacob
    Pike, C. William
    Kreisel, Charles
    Sonti, Rajiv
    Cobb, Nathan
    [J]. JOURNAL OF INTENSIVE CARE MEDICINE, 2022, 37 (07) : 883 - 889
  • [7] OUTCOMES OF PRONE POSITIONING IN MECHANICALLY VENTILATED PATIENTS WITH COVID-19: A PROSPECTIVE OBSERVATIONAL STUDY
    Chandler, Jonathan
    Jandali, Badr
    Smith, Dale
    Joyce, Katie
    Chollet-Hinton, Lynn
    Brownback, Kyle
    [J]. CHEST, 2021, 160 (04) : 1050A - 1050A
  • [8] Using Exoskeletons to Assist Medical Staff During Prone Positioning of Mechanically Ventilated COVID-19 Patients: A Pilot Study
    Ivaldi, Serena
    Maurice, Pauline
    Gomes, Waldez
    Theurel, Jean
    Wioland, Lien
    Atain-Kouadio, Jean-Jacques
    Claudon, Laurent
    Hani, Hind
    Kimmoun, Antoine
    Sellal, Jean-Marc
    Levy, Bruno
    Paysant, Jean
    Malikov, Serguei
    Chenuel, Bruno
    Settembre, Nicla
    [J]. ADVANCES IN HUMAN FACTORS AND ERGONOMICS IN HEALTHCARE AND MEDICAL DEVICES (AHFE 2021), 2021, 263 : 88 - 100
  • [9] Prone Position in Mechanically Ventilated COVID-19 Patients: A Multicenter Study
    Vollenberg, Richard
    Matern, Philipp
    Nowacki, Tobias
    Fuhrmann, Valentin
    Padberg, Jan-Soren
    Ochs, Kevin
    Schutte-Nutgen, Katharina
    Strauss, Markus
    Schmidt, Hartmut
    Tepasse, Phil-Robin
    [J]. JOURNAL OF CLINICAL MEDICINE, 2021, 10 (05) : 1 - 15
  • [10] PRONE POSITIONING IS A SAFE STRATEGY IN THE MANAGEMENT OF VENTILATED PATIENTS WITH COVID-19
    Blyth, Kelly
    Battisson, Carly
    Rotherham, Hannah
    [J]. AUSTRALIAN CRITICAL CARE, 2022, 35 : S10 - S10