Mapping the human auditory cortex using spectrotemporal receptive fields generated with magnetoencephalography

被引:3
|
作者
Falet, Jean-Pierre R. [1 ]
Cote, Jonathan [1 ]
Tarka, Veronica [1 ]
Martinez-Moreno, Zaida Escila [1 ]
Voss, Patrice [1 ]
de Villers-Sidani, Etienne [1 ]
机构
[1] McGill Univ, Dept Neurol & Neurosurg, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Magnetoencephalography; MEG; Tonotopy; Auditory cortex; Spectrotemporal receptive field; Abbreviations; IIPT; Isointensity Pure Tone; NEUROMAGNETIC SOURCE LOCALIZATION; INTRACEREBRAL EVOKED-POTENTIALS; TONOTOPIC ORGANIZATION; CORTICAL FIELDS; NATURAL SOUNDS; MEG; SPEECH; MAPS; LATERALIZATION; TOPOGRAPHY;
D O I
10.1016/j.neuroimage.2021.118222
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A B S T R A C T We present a novel method to map the functional organization of the human auditory cortex noninvasively using magnetoencephalography (MEG). More specifically, this method estimates via reverse correlation the spectrotemporal receptive fields (STRF) in response to a temporally dense pure tone stimulus, from which important spectrotemporal characteristics of neuronal processing can be extracted and mapped back onto the cortex surface. We show that several neuronal populations can be found examining the spectrotemporal characteristics of their STRFs, and demonstrate how these can be used to generate tonotopic gradient maps. In doing so, we show that the spatial resolution of MEG is sufficient to reliably extract important information about the spatial organization of the auditory cortex, while enabling the analysis of complex temporal dynamics of auditory processing such as best temporal modulation rate and response latency given its excellent temporal resolution. Furthermore, because spectrotemporally dense auditory stimuli can be used with MEG, the time required to acquire the necessary data to generate tonotopic maps is significantly less for MEG than for other neuroimaging tools that acquire BOLD-like signals.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex
    Miller, LM
    Escabí, MA
    Read, HL
    Schreiner, CE
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2002, 87 (01) : 516 - 527
  • [2] Hierarchy of speech-driven spectrotemporal receptive fields in human auditory cortex
    Venezia, Jonathan H.
    Thurman, Steven M.
    Richards, Virginia M.
    Hickok, Gregory
    [J]. NEUROIMAGE, 2019, 186 : 647 - 666
  • [3] Effects of adaptation on spectrotemporal receptive fields in primary auditory cortex
    Pienkowski, Martin
    Eggermont, Jos J.
    [J]. NEUROREPORT, 2009, 20 (13) : 1198 - 1203
  • [4] Speech-Driven Spectrotemporal Receptive Fields Beyond the Auditory Cortex
    Venezia, Jonathan H.
    Richards, Virginia M.
    Hickok, Gregory
    [J]. HEARING RESEARCH, 2021, 408
  • [5] Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex
    Linden, JF
    Liu, RC
    Sahani, M
    Schreiner, CE
    Merzenich, MM
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (04) : 2660 - 2675
  • [6] Spectrotemporal Receptive Fields in Anesthetized Cat Primary Auditory Cortex Are Context Dependent
    Gourevitch, Boris
    Norena, Arnaud
    Shaw, Gregory
    Eggermont, Jos J.
    [J]. CEREBRAL CORTEX, 2009, 19 (06) : 1448 - 1461
  • [7] Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex
    Fritz, J
    Shamma, S
    Elhilali, M
    Klein, D
    [J]. NATURE NEUROSCIENCE, 2003, 6 (11) : 1216 - 1223
  • [8] Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex
    Jonathan Fritz
    Shihab Shamma
    Mounya Elhilali
    David Klein
    [J]. Nature Neuroscience, 2003, 6 : 1216 - 1223
  • [9] Active listening: Task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex
    Fritz, J
    Elhilali, M
    Shamma, S
    [J]. HEARING RESEARCH, 2005, 206 (1-2) : 159 - 176
  • [10] Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex
    Britvina, T.
    Eggermonti, J. J.
    [J]. NEUROSCIENCE, 2008, 154 (04) : 1576 - 1588