Pervasive Transcription of Mitochondrial, Plastid, and Nucleomorph Genomes across Diverse Plastid-Bearing Species

被引:24
|
作者
Lima, Matheus Sanita [1 ]
Smith, David Roy [1 ]
机构
[1] Univ Western Ontario, Dept Biol, London, ON, Canada
来源
GENOME BIOLOGY AND EVOLUTION | 2017年 / 9卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
mitochondrial transcription; noncoding RNA; organelle gene expression; pervasive transcription; plastid transcription; LONG NONCODING RNAS; EUKARYOTIC GENOME; EVOLUTION; CHLOROPLASTS; EXPRESSION; NOISE; GENE; ORGANIZATION; SYMBIODINIUM; CHROMOSOMES;
D O I
10.1093/gbe/evx207
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organelle genomes exhibit remarkable diversity in content, structure, and size, and in their modes of gene expression, which are governed by both organelle- and nuclear-encoded machinery. Next generation sequencing (NGS) has generated unprecedented amounts of genomic and transcriptomic data, which can be used to investigate organelle genome transcription. However, most of the available eukaryotic RNA-sequencing (RNA-seq) data are used to study nuclear transcription only, even though large numbers of organelle-derived reads can typically be mined from these experiments. Here, we use publicly available RNA-seq data to assess organelle genome transcription in 59 diverse plastid-bearing species. Our RNA mapping analyses unraveled pervasive (full or near-full) transcription of mitochondrial, plastid, and nucleomorph genomes. In all cases, 85% or more of the organelle genome was recovered from the RNA data, including noncoding (intergenic and intronic) regions. These results reinforce the idea that organelles transcribe all or nearly all of their genomic material and are dependent on post-transcriptional processing of polycistronic transcripts. We explore the possibility that transcribed intergenic regions are producing functional noncoding RNAs, and that organelle genome noncoding content might provide raw material for generating regulatory RNAs.
引用
收藏
页码:2650 / 2657
页数:8
相关论文
共 50 条
  • [1] Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists
    Lima, Matheus Sanita
    Smith, David Roy
    G3-GENES GENOMES GENETICS, 2017, 7 (11): : 3789 - 3796
  • [2] Impact of a plastid-bearing endocytobiont on apicomplexan genomes
    Sato, S
    Tews, I
    Wilson, RJM
    INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2000, 30 (04) : 427 - 439
  • [3] Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life
    Kim, Eunsoo
    Harrison, James W.
    Sudek, Sebastian
    Jones, Meredith D. M.
    Wilcox, Heather M.
    Richards, Thomas A.
    Worden, Alexandra Z.
    Archibald, John M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (04) : 1496 - 1500
  • [4] Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes
    Niu, Yingfeng
    Gao, Chengwen
    Liu, Jin
    PEERJ, 2021, 9
  • [5] Organellar DNA Polymerases in Complex Plastid-Bearing Algae
    Hirakawa, Yoshihisa
    Watanabe, Arisa
    BIOMOLECULES, 2019, 9 (04):
  • [6] Sequencing complete mitochondrial and plastid genomes
    Burger, Gertraud
    Lavrov, Dennis V.
    Forget, Lise
    Lang, B. Franz
    NATURE PROTOCOLS, 2007, 2 (03) : 603 - 614
  • [7] The plastid and mitochondrial genomes of Eucalyptus grandis
    Desre Pinard
    Alexander A. Myburg
    Eshchar Mizrachi
    BMC Genomics, 20
  • [8] The plastid and mitochondrial genomes of Eucalyptus grandis
    Pinard, Desre
    Myburg, Alexander A.
    Mizrachi, Eshchar
    BMC GENOMICS, 2019, 20 (1)
  • [9] Sequencing complete mitochondrial and plastid genomes
    Gertraud Burger
    Dennis V Lavrov
    Lise Forget
    B Franz Lang
    Nature Protocols, 2007, 2 : 603 - 614
  • [10] Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes
    Li, Yun-Xia
    Li, Zhang-Hai
    Schuiteman, Andre
    Chase, Mark W.
    Li, Jian-Wu
    Huang, Wei-Chang
    Hidayat, Arief
    Wu, Sha-Sha
    Jin, Xiao-Hua
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2019, 139