Evaluation of light trapping structures for liquid-phase crystallized silicon on glass (LPCSG)

被引:8
|
作者
Vetter, Michael [1 ]
Jia, Guobin [1 ]
Sanei, Azade [2 ]
Gawlik, Annett [1 ]
Plentz, Jonathan [1 ]
Andrae, Gudrun [1 ]
机构
[1] Leibniz Inst Photon Technol IPIIT, Dept Funct Interfaces, Albert Einstein Str 9, D-07745 Jena, Germany
[2] Ernst Abbe Fachhochschule Jena, Carl Zeiss Promenade 2, D-07745 Jena, Germany
基金
欧盟地平线“2020”;
关键词
charge carrier lifetime; laser crystallization; multicrystalline materials; photoconductance; silicon; thin films;
D O I
10.1002/pssa.201600859
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Liquid-phase crystallized silicon on glass (LPCSG) presents a promising material to fabricate high quality silicon thin films, e.g., for solar cells and modules. Using continuous wave line focus laser irradiation at 808nm, about 10m thick microcrystalline silicon layers are fabricated by liquid-phase crystallization of amorphous or nanocrystalline silicon layers deposited by electron beam evaporation on Borofloat 33 glass. To achieve high solar cell efficiencies with such thin silicon layers, effective light trapping structures at the silicon surface are needed to enhance the light absorption and thereby the current in the solar cell. At the same time, these surface structures must provide low surface recombination velocity to maintain high open circuit voltage (Voc). Light trapping structures in LPCSG absorber prepared by conventional KOH texturing and by nanowire structuring of the solar cell backside are investigated. The impact of structures on short circuit current density (Isc) is determined from optical measurements. As a new approach, effective carrier lifetime is measured in LPCSG absorbers using the quasi steady-state photoconductance method to determine the impact of structuring on surface recombination and implied Voc of solar cell precursors. Carrier lifetimes in the range of 300-400ns are measured indicating a carrier diffusion length of more than 20m, which is 2-3 times larger than the layer thickness. It is found that a slight pyramidal surface texture by KOH solution provides a high level of light trapping increasing Isc by 17-18% and maintaining high Voc (>600mV). The potential for current enhancement of nanowire structuring is higher (approximate to 20%), but further optimization of nanowire dimensions and of surface cleaning of nanowire structures is needed to overcome higher surface recombination and the resulting Voc losses.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Carrier lifetime in liquid-phase crystallized silicon on glass
    Vetter, Michael
    Gawlik, Annett
    Plentz, Jonathan
    Andrae, Gudrun
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2016), 2016, 92 : 248 - 254
  • [2] Photoluminescence at room temperature of liquid-phase crystallized silicon on glass
    Vetter, Michael
    Schwuchow, Anka
    Andrae, Gudrun
    [J]. AIP ADVANCES, 2016, 6 (12)
  • [3] Interface Engineering for Liquid-Phase Crystallized-Silicon Solar Cells on Glass
    Preissler, Natalie
    Amkreutz, Daniel
    Sonntag, Paul
    Trahms, Martina
    Schlatmann, Rutger
    Rech, Bernd
    [J]. SOLAR RRL, 2017, 1 (3-4):
  • [4] PECVD Intermediate and Absorber Layers Applied in Liquid-Phase Crystallized Silicon Solar Cells on Glass Substrates
    Gabriel, Onno
    Frijnts, Tim
    Calnan, Sonya
    Ring, Sven
    Kirner, Simon
    Opitz, Andreas
    Rothert, Inga
    Rhein, Holger
    Zelt, Matthias
    Bhatti, Khalid
    Zollondz, Jens-Hendrik
    Heidelberg, Andreas
    Haschke, Jan
    Amkreutz, Daniel
    Gall, Stefan
    Friedrich, Felice
    Stannowski, Bernd
    Rech, Bernd
    Schlatmann, Rutger
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (06): : 1343 - 1348
  • [5] Impact of Dielectric Layers on Liquid-Phase Crystallized Silicon Solar Cells
    Preissler, Natalie
    Trinh, Cham Thi
    Trahms, Martina
    Sonntag, Paul
    Abou-Ras, Daniel
    Kirmse, Holm
    Schlatmann, Rutger
    Rech, Bernd
    Amkreutz, Daniel
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (01): : 30 - 37
  • [6] Optical simulations of advanced light management for liquid-phase crystallized silicon thin-film solar cells
    Jaeger, Klaus
    Koeppel, Grit
    Eisenhauer, David
    Chen, Duote
    Hammerschmidt, Martin
    Burger, Sven
    Becker, Christiane
    [J]. NANOSTRUCTURED THIN FILMS X, 2017, 10356
  • [7] Assessment of Bulk and Interface Quality for Liquid Phase Crystallized Silicon on Glass
    Cham Thi Trinh
    Bokalic, Mateyz
    Preissler, Natalie
    Trahms, Martina
    Abou-Ras, Daniel
    Schlatmann, Rutger
    Amkreutz, Daniel
    Topic, Marko
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (02): : 364 - 373
  • [8] Interface passivation of liquid-phase crystallized silicon on glass studied with high-frequency capacitance-voltage measurements
    Preissler, Natalie
    Toefflinger, Jan Amaru
    Shutsko, Ivan
    Gabriel, Onno
    Calnen, Sonya
    Stannowski, Bernd
    Rech, Bernd
    Schlatmann, Rutger
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (07): : 1697 - 1704
  • [9] Passivation at the interface between liquid-phase crystallized silicon and silicon oxynitride in thin film solar cells
    Preissler, Natalie
    Amaru Toefflinger, Jan
    Gabriel, Onno
    Sonntag, Paul
    Amkreutz, Daniel
    Stannowski, Bernd
    Rech, Bernd
    Schlatmann, Rutger
    [J]. PROGRESS IN PHOTOVOLTAICS, 2017, 25 (07): : 515 - 524
  • [10] Investigation of Thermal Stability Effects of Thick Hydrogenated Amorphous Silicon Precursor Layers for Liquid-Phase Crystallized Silicon
    Bosan, Hassan Ali
    Beyer, Wolfhard
    Breuer, Uwe
    Finger, Friedhelm
    Hambach, Nelli
    Nuys, Maurice
    Pennartz, Frank
    Amkreutz, Daniel
    Haas, Stefan
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (09):