Modelling Power Output at Nuclear Power Plant by Neural Networks

被引:0
|
作者
Talonen, Jaakko [1 ]
Sirola, Miki [1 ]
Augilius, Eimontas [1 ]
机构
[1] Aalto Univ, Sch Sci & Technol, FI-00076 Aalto, Finland
关键词
Nuclear Power Plant; Neural Networks; One-step Ahead Prediction; Model Input Selection; Evaluation Methods;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. NNs are widely used for time series prediction, but it isn't utilized for Olkiluoto nuclear power plant (NPP), Finland. Preprocessing, suitable input signals and delay analysis are important phases in modelling. Optimized number of delayed input signals and neurons in hidden-layer are found to make possible prediction of idle power process signal. It is mainly concentrated on algorithms on input signal selection and finding the optimal model for one-step ahead prediction.
引用
收藏
页码:46 / 49
页数:4
相关论文
共 50 条
  • [1] Identification of nuclear power plant transients with neural networks
    Embrechts, MJ
    Benedek, S
    [J]. SMC '97 CONFERENCE PROCEEDINGS - 1997 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: CONFERENCE THEME: COMPUTATIONAL CYBERNETICS AND SIMULATION, 1997, : 912 - 916
  • [2] Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks
    Saberian, Aminmohammad
    Hizam, H.
    Radzi, M. A. M.
    Ab Kadir, M. Z. A.
    Mirzaei, Maryam
    [J]. INTERNATIONAL JOURNAL OF PHOTOENERGY, 2014, 2014
  • [3] Modelling the power output from a steam power plant in Nigeria
    Babatunde, Damilola E.
    Anozie, Ambrose N.
    Omoleye, James A.
    Oyebode, Oluwaseun
    Babatunde, Olubayo M.
    Ayeni, Augustine O.
    [J]. ENERGY REPORTS, 2020, 6 : 822 - 828
  • [4] Dynamic nonlinear modelling of power plant by physical principles and neural networks
    Lu, S
    Hogg, BW
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2000, 22 (01) : 67 - 78
  • [5] Hybrid identification of nuclear power plant transients with artificial neural networks
    Embrechts, MJ
    Benedek, S
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (03) : 686 - 693
  • [6] A nuclear power plant expert system using artificial neural networks
    Lee, Mal rey
    Jeong, Hye-Jin
    Choi, Young Joon
    Gatton, Thomas M.
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 1239 - 1245
  • [7] NUCLEAR-POWER-PLANT PERFORMANCE STUDY BY USING NEURAL NETWORKS
    GUO, ZC
    UHRIG, RE
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1992, 39 (04) : 915 - 918
  • [8] Application of artificial neural networks to nuclear power plant transient diagnosis
    Santosh, T. V.
    Vinod, Gopika
    Saraf, R. K.
    Ghosh, A. K.
    Kushwaha, H. S.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2007, 92 (10) : 1468 - 1472
  • [9] APPLICATION OF NEURAL NETWORKS TO SIGNAL PREDICTION IN NUCLEAR-POWER-PLANT
    KIM, WJ
    CHANG, SH
    LEE, BH
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1993, 40 (05) : 1337 - 1341
  • [10] MODELLING OF NUCLEAR POWER PLANT DECOMMISSIONING FINANCING
    Bems, J.
    Knapek, J.
    Kralik, T.
    Hejhal, M.
    Kubancak, J.
    Vasicek, J.
    [J]. RADIATION PROTECTION DOSIMETRY, 2015, 164 (04) : 519 - 522