Scalable nanostructured membranes for solid-oxide fuel cells

被引:0
|
作者
Tsuchiya, Masaru [1 ,2 ]
Lai, Bo-Kuai [2 ]
Ramanathan, Shriram [2 ]
机构
[1] SiEnergy Syst LLC, Boston, MA 02110 USA
[2] Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
YTTRIA-STABILIZED ZIRCONIA; HIGH-PERFORMANCE; MICROSTRUCTURE; FABRICATION; STRESS;
D O I
10.1038/NNANO.2011.43
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800 degrees C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes(2). However, although proof-of-concept thin-film devices have been demonstrated(3), scaling up remains a significant challenge because large-area membranes less than similar to 100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm(-2) at 510 degrees C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.
引用
收藏
页码:282 / 286
页数:5
相关论文
共 50 条
  • [1] Scalable nanostructured membranes for solid-oxide fuel cells
    Tsuchiya M.
    Lai B.-K.
    Ramanathan S.
    [J]. Nature Nanotechnology, 2011, 6 (5) : 282 - 286
  • [2] Stabilized Zirconia-Based Nanostructured Powders for Solid-Oxide Fuel Cells
    Sokolov, P. S.
    Karpyuk, P. V.
    Dosovitskiy, G. A.
    Volkov, P. A.
    Lyskov, N. V.
    Slyusar', I. V.
    Dosovitskiy, A. E.
    [J]. RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2018, 54 (06) : 464 - 470
  • [3] Nanostructured ceramic materials: Applications in gas sensors and solid-oxide fuel cells
    Lamas, D. G.
    Bianchetti, M. F.
    Cabezas, M. D.
    Walsoee de Reca, N. E.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 495 (02) : 548 - 551
  • [4] Electrolytes for solid-oxide fuel cells
    Yokokawa, H
    Sakai, N
    Horita, T
    Yamaji, K
    Brito, ME
    [J]. MRS BULLETIN, 2005, 30 (08) : 591 - 595
  • [5] Electrolytes for Solid-Oxide Fuel Cells
    Harumi Yokokawa
    Natsuko Sakai
    Teruhisa Horita
    Katsuhiko Yamaji
    M. E. Brito
    [J]. MRS Bulletin, 2005, 30 : 591 - 595
  • [6] Advances in solid-oxide fuel cells
    Bakker, W
    Cohn, A
    Goldstein, R
    [J]. EPRI JOURNAL, 1996, 21 (05): : 42 - 45
  • [7] Stabilized Zirconia-Based Nanostructured Powders for Solid-Oxide Fuel Cells
    P. S. Sokolov
    P. V. Karpyuk
    G. A. Dosovitskiy
    P. A. Volkov
    N. V. Lyskov
    I. V. Slyusar′
    A. E. Dosovitskiy
    [J]. Russian Journal of Electrochemistry, 2018, 54 : 464 - 470
  • [8] Modeling of solid-oxide fuel cells
    Janardhanan, Vinod M.
    Deutschmann, Olaf
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2007, 221 (04): : 443 - 478
  • [9] Nanostructured Platinum Catalysts by Atomic-Layer Deposition for Solid-Oxide Fuel Cells
    Chao, Cheng-Chieh
    Motoyama, Munekazu
    Prinz, Fritz B.
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (06) : 651 - 654
  • [10] Materials challenges for solid-oxide fuel cells
    Jeffrey W. Fergus
    [J]. JOM, 2007, 59 : 56 - 62