Small parameter limit for ergodic, discrete-time, partially observed, risk-sensitive control problems

被引:2
|
作者
Albertini, F
Pra, PD
Prior, C
机构
[1] Univ Padua, Dipartimento Matemat, I-35100 Padua, Italy
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
risk-sensitive control; dynamic games; large deviations;
D O I
10.1007/PL00009875
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that discrete-time, partially observed, risk-sensitive control problems over an infinite time horizon converge, in the small noise limit, to deterministic dynamic games, in the sense of uniform convergence of the value function on compact subsets of its domain. We make use of new results concerning large deviations and existence of value functions.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Small Parameter Limit for Ergodic, Discrete-Time, Partially Observed, Risk-Sensitive Control Problems
    Francesca Albertini
    Paolo Dai Pra
    Chiara Prior
    [J]. Mathematics of Control, Signals and Systems, 2001, 14 : 1 - 28
  • [2] Small parameter limit for discrete-time partially observed risk-sensitive control problems
    Albertini, F
    Pra, PD
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 37 (01) : 1 - 32
  • [3] Partially Observed Discrete-Time Risk-Sensitive Mean Field Games
    Saldi, Naci
    Basar, Tamer
    Raginsky, Maxim
    [J]. DYNAMIC GAMES AND APPLICATIONS, 2023, 13 (03) : 929 - 960
  • [4] Partially Observed Discrete-Time Risk-Sensitive Mean Field Games
    Naci Saldi
    Tamer Başar
    Maxim Raginsky
    [J]. Dynamic Games and Applications, 2023, 13 : 929 - 960
  • [5] RISK-SENSITIVE CONTROL AND DYNAMIC-GAMES FOR PARTIALLY OBSERVED DISCRETE-TIME NONLINEAR-SYSTEMS
    JAMES, MR
    BARAS, JS
    ELLIOTT, RJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (04) : 780 - 792
  • [6] Partially-Observed Discrete-Time Risk-Sensitive Mean-Field Games
    Saldi, Naci
    Basar, Tamer
    Raginsky, Maxim
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 317 - 322
  • [7] Nonlinear discrete-time risk-sensitive optimal control
    Campi, MC
    James, MR
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1996, 6 (01) : 1 - 19
  • [8] Partially observed non-linear risk-sensitive optimal stopping control for non-linear discrete-time systems
    Ford, Jason J.
    [J]. SYSTEMS & CONTROL LETTERS, 2006, 55 (09) : 770 - 776
  • [9] Discrete-time hybrid control with risk-sensitive discounted costs
    Blancas-Rivera, Ruben
    Jasso-Fuentes, Hector
    [J]. DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2024,
  • [10] Risk-sensitive control of discrete-time Markov processes with infinite horizon
    Di Masi, GB
    Stettner, L
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 38 (01) : 61 - 78