Generalized Berwald spaces with (α, β)-metrics

被引:30
|
作者
Tayebi, A. [1 ]
Barzegari, M. [1 ]
机构
[1] Univ Qom, Fac Sci, Dept Math, Qom, Iran
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2016年 / 27卷 / 03期
关键词
Generalized Berwald manifold; (alpha; beta)-metric; Reversible metric; beta-change; Semi-symmetric covariant derivative; Left invariant metric; MANIFOLDS; CURVATURE;
D O I
10.1016/j.indag.2016.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are going to study generalized Berwald manifold with (alpha, beta)-metrics. We show that a Finsler manifold with (alpha, beta)-Finsler function of sign property is a generalized Berwald manifold if and only if there exists a covariant derivative such that it is compatible with alpha and beta and equivalently if and only if the dual vector field beta(#) is of constant Riemannian length. This generalizes the result previously only known in the case of Randers manifold. Then, we find the necessary and sufficient condition under which an (alpha, beta)-metric of sign property is compatible with a semi-symmetric covariant derivative. In the following, we consider the beta-change of reversible Finsler manifolds and find some conditions under which these manifolds are generalized Berwaldian. Finally, we study the effect of our theory on left invariant Finsler function on Lie groups. Crown Copyright (C) 2016 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG). All rights reserved.
引用
收藏
页码:670 / 683
页数:14
相关论文
共 50 条
  • [1] Generalized Berwald metrics
    Peyghan, Esmaeil
    Tayebi, Akbar
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (03) : 475 - 484
  • [2] On generalized Berwald spaces
    Wagner, V
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1943, 39 : 3 - 5
  • [3] Monochromatic metrics are generalized Berwald
    Bartelmess, Nina
    Matveev, Vladimir S.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 : 264 - 271
  • [4] A characterization of weakly Berwald spaces with (α, β)-metrics
    Wang, Kun
    Zhong, Chunping
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 82
  • [5] ON PROJECTIVELY FLAT GENERALIZED BERWALD (α, β)-METRICS
    Jazayeri, Azadeh
    Rezaei, Bahman
    Tayebi, Akbar
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (02): : 317 - 326
  • [6] Generalized Symmetric Berwald Spaces
    Habibi, Parastoo
    Razavi, Asadollah
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2014, 9 (01): : 63 - 69
  • [7] ON THE GENERALIZED RANDERS CHANGE OF BERWALD METRICS
    Lee, Nany
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2010, 18 (04): : 387 - 394
  • [8] ON THE CONSTRUCTION OF RIEMANNIAN METRICS FOR BERWALD SPACES BY AVERAGING
    Crampin, M.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (03): : 737 - 750
  • [9] Generalized Berwald Projective Weyl GBW) Metrics
    Sadeghzadeh, Nasrin
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2024,
  • [10] GENERALIZED BERWALD SPACES AS AFFINE DEFORMATIONS OF MINKOWSKI SPACES
    Szilasi, J.
    Tamassy, L.
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 57 (02): : 165 - 178