DksA and DNA double-strand break repair

被引:13
|
作者
Myka, Kamila K. [1 ,2 ]
Gottesman, Max E. [1 ]
机构
[1] Columbia Univ, Dept Microbiol & Immunol, Med Ctr, New York, NY 10032 USA
[2] Mem Sloan Kettering Canc Ctr, Program Mol Biol, New York, NY 10021 USA
关键词
Double-strand break repair; Transcription factor DksA; (p)ppGpp; Nalidixic acid; Phleomycin; Type II topoisomerase; Replication-transcription conflicts; Anti-backtracking factors; ESCHERICHIA-COLI CHROMOSOME; RNA-POLYMERASE; TRANSCRIPTION INITIATION; SECONDARY CHANNEL; PPGPP BINDING; REPLICATION; FIDELITY; CLEAVAGE; MECHANISM; GROWTH;
D O I
10.1007/s00294-019-00983-x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We use genetic assays to suggest that transcription-coupled repair or new origin formation in Escherichia coli involves removal of RNAP to create an RNA primer for DNA synthesis. Transcription factor DksA was shown to play a role in numerous reactions involving RNA polymerase. Some, but not all, of the activities of DksA at promoters or during transcription elongation require (p)ppGpp. In addition to its role during transcription, DksA is also involved in maintaining genome integrity. Cells lacking DksA are sensitive to multiple DNA damaging agents including UV light, ionizing radiation, mitomycin C, and nalidixic acid. Here, we focus on two recent studies addressing the importance of DksA in the repair of double-strand breaks (DSBs), one by Sivaramakrishnan et al. (Nature 550:214-218, 2017) and one originating in our laboratory, Myka et al. (Mol Microbiol 111:1382-1397. https://doi.org/10.1111/mmi.14227, 2019). It appears that depending on the type and possibly location of DNA damage, DksA can play either a passive or an active role in DSB repair. The passive role relies on exclusion of anti-backtracking factors from the RNAP secondary channel. The exact mechanism of active DksA-mediated DNA repair is unknown. However, DksA was proposed to destabilize transcription complexes, thus clearing the way for recombination and DNA repair. Based on the requirement for DksA, both in repair of DSBs and the R-loop-dependent formation of new origins of DNA replication, we propose that DksA may allow for removal of RNAP without unwinding of the RNA:DNA hybrid, which can then be extended by a DNA polymerase. This mechanism obviates the need for RNAP backtracking to repair damaged DNA.
引用
收藏
页码:1297 / 1300
页数:4
相关论文
共 50 条
  • [1] DksA and DNA double-strand break repair
    Kamila K. Myka
    Max E. Gottesman
    [J]. Current Genetics, 2019, 65 : 1297 - 1300
  • [2] DNA double-strand break repair
    Featherstone, C
    Jackson, SP
    [J]. CURRENT BIOLOGY, 1999, 9 (20) : R759 - R761
  • [3] DNA double-strand break repair and development
    Phillips, E. R.
    McKinnon, P. J.
    [J]. ONCOGENE, 2007, 26 (56) : 7799 - 7808
  • [4] DNA double-strand break repair and development
    E R Phillips
    P J McKinnon
    [J]. Oncogene, 2007, 26 : 7799 - 7808
  • [5] Ubiquitylation in DNA double-strand break repair
    Tang, Mengfan
    Li, Siting
    Chen, Junjie
    [J]. DNA REPAIR, 2021, 103
  • [6] Double-Strand DNA Break Repair in Mycobacteria
    Glickman, Michael S.
    [J]. MICROBIOLOGY SPECTRUM, 2014, 2 (05):
  • [7] DNA Repair: A RIDDLE at a Double-Strand Break
    Hiom, Kevin
    [J]. CURRENT BIOLOGY, 2009, 19 (08) : R331 - R333
  • [8] Mechanisms of DNA double-strand break repair
    Symington, Lorraine S.
    Deng, Sarah K.
    [J]. YEAST, 2015, 32 : S31 - S31
  • [9] Histone modifications and DNA double-strand break repair
    Moore, JD
    Krebs, JE
    [J]. BIOCHEMISTRY AND CELL BIOLOGY, 2004, 82 (04) : 446 - 452
  • [10] Telomere anchoring and DNA double-strand break repair
    不详
    [J]. CELL, 2006, 124 (06) : 1095 - 1095