Unsupervised modulation filter learning for noise-robust speech recognition

被引:11
|
作者
Agrawal, Purvi [1 ]
Ganapathy, Sriram [1 ]
机构
[1] Indian Inst Sci, Bangalore, Karnataka, India
来源
关键词
FEATURES;
D O I
10.1121/1.5001926
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The modulation filtering approach to robust automatic speech recognition (ASR) is based on enhancing perceptually relevant regions of the modulation spectrum while suppressing the regions susceptible to noise. In this paper, a data- driven unsupervised modulation filter learning scheme is proposed using convolutional restricted Boltzmann machine. The initial filter is learned using the speech spectrogram while subsequent filters are learned using residual spectrograms. The modulation filtered spectrograms are used for ASR experiments on noisy and reverberant speech where these features provide significant improvements over other robust features. Furthermore, the application of the proposed method for semi- supervised learning is investigated. (C) 2017 Acoustical Society of America.
引用
收藏
页码:1686 / 1692
页数:7
相关论文
共 50 条
  • [1] Sparse coding of the modulation spectrum for noise-robust automatic speech recognition
    Sara Ahmadi
    Seyed Mohammad Ahadi
    Bert Cranen
    Lou Boves
    [J]. EURASIP Journal on Audio, Speech, and Music Processing, 2014
  • [2] Sparse coding of the modulation spectrum for noise-robust automatic speech recognition
    Ahmadi, Sara
    Ahadi, Seyed Mohammad
    Cranen, Bert
    Boves, Lou
    [J]. EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2014, : 1 - 20
  • [3] Noise-Robust speech recognition of Conversational Telephone Speech
    Chen, Gang
    Tolba, Hesham
    O'Shaughnessy, Douglas
    [J]. INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, VOLS 1-5, 2006, : 1101 - 1104
  • [4] Unsupervised learning of time-frequency patches as a noise-robust representation of speech
    Van Segbroeck, Maarten
    Van Hamme, Hugo
    [J]. SPEECH COMMUNICATION, 2009, 51 (11) : 1124 - 1138
  • [5] EXTENDED VTS FOR NOISE-ROBUST SPEECH RECOGNITION
    van Dalen, R. C.
    Gales, M. J. F.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3829 - 3832
  • [6] Covariance Modelling for Noise-Robust Speech Recognition
    van Dalen, R. C.
    Gales, M. J. F.
    [J]. INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 2000 - 2003
  • [7] An Overview of Noise-Robust Automatic Speech Recognition
    Li, Jinyu
    Deng, Li
    Gong, Yifan
    Haeb-Umbach, Reinhold
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (04) : 745 - 777
  • [8] Noise-robust Attention Learning for End-to-End Speech Recognition
    Higuchi, Yosuke
    Tawara, Naohiro
    Ogawa, Atsunori
    Iwata, Tomoharu
    Kobayashi, Tetsunori
    Ogawa, Tetsuji
    [J]. 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 311 - 315
  • [9] Extended VTS for Noise-Robust Speech Recognition
    van Dalen, Rogier C.
    Gales, Mark J. F.
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (04): : 733 - 743
  • [10] Frame decorrelation for noise-robust speech recognition
    Jung, HY
    Kim, DY
    Un, CK
    [J]. ELECTRONICS LETTERS, 1996, 32 (13) : 1163 - 1164