Context-specific interactions in literature-curated protein interaction databases

被引:17
|
作者
Stacey, R. Greg [1 ]
Skinnider, Michael A. [1 ]
Chik, Jenny H. L. [3 ,4 ]
Foster, Leonard J. [1 ,2 ]
机构
[1] Univ British Columbia, Michael Smith Labs, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Dept Biochem, Vancouver, BC V6T 1Z3, Canada
[3] Vancouver Coastal Hlth Res Inst, Int Collaborat Repair Discoveries ICORD, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
来源
BMC GENOMICS | 2018年 / 19卷
基金
加拿大健康研究院;
关键词
Proteomics; Interactome; Protein-protein interaction; Literature curated database; COMPREHENSIVE RESOURCE; INTERACTION NETWORKS; SCALE MAP; COMPLEXES; PROTEOMICS; CORUM;
D O I
10.1186/s12864-018-5139-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundDatabases of literature-curated protein-protein interactions (PPIs) are often used to interpret high-throughput interactome mapping studies and estimate error rates. These databases combine interactions across thousands of published studies and experimental techniques. Because the tendency for two proteins to interact depends on the local conditions, this heterogeneity of conditions means that only a subset of database PPIs are interacting during any given experiment. A typical use of these databases as gold standards in interactome mapping projects, however, assumes that PPIs included in the database are indeed interacting under the experimental conditions of the study.ResultsUsing raw data from 20 co-fractionation experiments and six published interactomes, we demonstrate that this assumption is often false, with up to 55% of purported gold standard interactions showing no evidence of interaction, on average. We identify a subset of CORUM database complexes that do show consistent evidence of interaction in co-fractionation studies, and we use this subset as gold standards to dramatically improve interactome mapping as judged by the number of predicted interactions at a given error rate.ConclusionsWe recommend using this CORUM subset as the gold standard set in future co-fractionation studies. More generally, we recommend using the subset of literature-curated PPIs that are specific to the experimental context whenever possible.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Context-specific interactions in literature-curated protein interaction databases
    R. Greg Stacey
    Michael A. Skinnider
    Jenny H. L. Chik
    Leonard J. Foster
    [J]. BMC Genomics, 19 (1)
  • [2] Literature-curated protein interaction datasets
    Cusick M.E.
    Yu H.
    Smolyar A.
    Venkatesan K.
    Carvunis A.-R.
    Simonis N.
    Rual J.-F.
    Borick H.
    Braun P.
    Dreze M.
    Vandenhaute J.
    Galli M.
    Yazaki J.
    Hill D.E.
    Ecker J.R.
    Roth F.P.
    Vidal M.
    [J]. Nature Methods, 2009, 6 (1) : 39 - 46
  • [3] Literature-curated protein interaction datasets
    Cusick, Michael E.
    Yu, Haiyuan
    Smolyar, Alex
    Venkatesan, Kavitha
    Carvunis, Anne-Ruxandra
    Simonis, Nicolas
    Rual, Jean-Francois
    Borick, Heather
    Braun, Pascal
    Dreze, Matija
    Vandenhaute, Jean
    Galli, Mary
    Yazaki, Junshi
    Hill, David E.
    Ecker, Joseph R.
    Roth, Frederick P.
    Vidal, Marc
    [J]. NATURE METHODS, 2009, 6 (01) : 39 - 46
  • [4] Addendum: Literature-curated protein interaction datasets
    Michael E Cusick
    Haiyuan Yu
    Alex Smolyar
    Kavitha Venkatesan
    Anne-Ruxandra Carvunis
    Nicolas Simonis
    Jean-François Rual
    Heather Borick
    Pascal Braun
    Matija Dreze
    Jean Vandenhaute
    Mary Galli
    Junshi Yazaki
    David E Hill
    Joseph R Ecker
    Frederick P Roth
    Marc Vidal
    [J]. Nature Methods, 2009, 6 : 934 - 935
  • [5] Context-Specific Protein Network Miner - An Online System for Exploring Context-Specific Protein Interaction Networks from the Literature
    Chowdhary, Rajesh
    Tan, Sin Lam
    Zhang, Jinfeng
    Karnik, Shreyas
    Bajic, Vladimir B.
    Liu, Jun S.
    [J]. PLOS ONE, 2012, 7 (04):
  • [6] Literature-curated protein interaction datasets (vol 6, pg 39, 2009)
    Cusick, Michael E.
    Yu, Haiyuan
    Smolyar, Alex
    Venkatesan, Kavitha
    Carvunis, Anne-Ruxandra
    Simonis, Nicolas
    Rual, Jean-Francois
    Borick, Heather
    Braun, Pascal
    Dreze, Matija
    Vandenhaute, Jean
    Galli, Mary
    Yazaki, Junshi
    Hill, David E.
    Ecker, Joseph R.
    Roth, Frederick P.
    Vidal, Marc
    [J]. NATURE METHODS, 2009, 6 (12) : 934 - 935
  • [7] MPI-LIT: a literature-curated dataset of microbial binary protein-protein interactions
    Rajagopala, Seesandra V.
    Goll, Johannes
    Gowda, N. D. Deve
    Sunil, Kumar C.
    Titz, Bjoern
    Mukherjee, Arnab
    Mary, Sharmila S.
    Raviswaran, Naresh
    Poojari, Chetan S.
    Ramachandra, Srinivas
    Shtivelband, Svetlana
    Blazie, Stephen M.
    Hofmann, Julia
    Uetz, Peter
    [J]. BIOINFORMATICS, 2008, 24 (22) : 2622 - 2627
  • [8] ONLINE ARCHIVAL DATABASES AND THE CONTEXT-SPECIFIC DIGITAL COMMONS
    Fortin, M.
    [J]. INTED2011: 5TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2011, : 1453 - 1453
  • [9] From random to predictive: a context-specific interaction framework improves selection of drug protein-protein interactions for unknown drug pathways
    Wilson, Jennifer L.
    Gravina, Alessio
    Grimes, Kevin
    [J]. INTEGRATIVE BIOLOGY, 2022, 14 (01) : 13 - 24
  • [10] Capturing context-specific regulation in molecular interaction networks
    Stephen T. A. Rush
    Dirk Repsilber
    [J]. BMC Bioinformatics, 19