Flow Prediction Around an Oscillating NACA0012 Airfoil at Re=1,000,000

被引:1
|
作者
Frederich, O. [1 ]
Bunge, U. [2 ]
Mockett, C. [1 ]
Thiele, F. [1 ]
机构
[1] Berlin Univ Technol, Inst Fluid Mech & Engn Acoust, Muller Breslau Str 8, D-10623 Berlin, Germany
[2] Wolfsburg GmbH, IVM Automat, Wolfsburg 38442, Germany
关键词
NACA0012; Oscillating airfoil; Dynamic stall; URANS; DES; DETACHED-EDDY-SIMULATION;
D O I
10.1007/978-1-4020-9898-7_5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The maximum obtainable lift of a rotationally-oscillating airfoil is significantly higher than in the static or quasi-static case. The correct prediction of dynamic stall as the basis of the dynamically increased lift is essential to quantify the time-dependent load on the airfoil structure. This study applies unsteady RANS (URANS) and detached-eddy simulation (DES) with various turbulence models and parameter variations in order to capture the physics around an oscillating NACA0012 airfoil at a relatively high Reynolds number and to identify possible advantages and potential drawbacks of the given methods. The quality of the flow prediction is assessed primarily on the basis of integral force coefficients compared to experimental results, revealing the influence of resolution on maximum lift and the corresponding angle of incidence.
引用
收藏
页码:49 / +
页数:2
相关论文
共 50 条
  • [2] Influence of Turbulence Intensity on Flow Field Around NACA0012 Wing at Reynolds Number of 20,000
    Kase, Masataka
    Mizoguchi, Makoto
    Itoh, Hajime
    [J]. PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 1, 2023, 912 : 505 - 511
  • [3] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    P. Akbarzadeh
    A. Askari Lehdarboni
    S. M. Derazgisoo
    [J]. Meccanica, 2018, 53 : 3457 - 3476
  • [4] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    Akbarzadeh, P.
    Lehdarboni, A. Askari
    Derazgisoo, S. M.
    [J]. MECCANICA, 2018, 53 (14) : 3457 - 3476
  • [5] Pressure Fluctuation near the Limiting Characteristics in a Sonic Flow around NACA0012 Airfoil
    Zhang, Lei
    Wu, Zi-Niu
    [J]. FLUIDS, 2022, 7 (09)
  • [6] Low Reynolds unsteady flow simulation around NACA0012 airfoil with active flow control
    Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, P.Box: 3619995161, Shahrood
    Semnan, Iran
    [J]. Meccanica, 14 (3457-3476):
  • [7] Computational investigation of the steady and unsteady flow field developed around a NACA0012 airfoil
    Laboratoire de Mécanique Appliquée, Faculté de Mécanique, Université des Sciences et de la Technologie d'Oran, B.P. 1505, El'mnaouar, Oran, Algeria
    [J]. International Journal of Heat and Technology, 2007, 25 (01) : 125 - 129
  • [8] Lattice-Boltzmann Simulations of an Oscillating NACA0012 Airfoil in Dynamic Stall
    Ribeiro, Andre F. P.
    Casalino, Damiano
    Fares, Ehab
    [J]. ADVANCES IN FLUID-STRUCTURE INTERACTION, 2016, 133 : 179 - 192
  • [9] Hysteresis of two-dimensional flows around a NACA0012 airfoil at Re=5000 and linear analyses of their mean flow
    Marquet, O.
    Leontini, J. S.
    Zhao, J.
    Thompson, M. C.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2022, 94
  • [10] Effect of NACA0012 Airfoil Pitching Oscillation on Flow Past a Cylinder
    Han, Rong
    Liu, Wei
    Yang, Xiao-Liang
    Chang, Xing-Hua
    [J]. ENERGIES, 2021, 14 (17)