Data-driven rate-optimal specification testing in regression models

被引:47
|
作者
Guerre, E
Lavergne, P
机构
[1] Univ Paris 06, Lab Stat Theor & Appl, F-75252 Paris, France
[2] Univ Toulouse 1, CNRS, UMR 5604, GREMAQ,Mfg Tabacs Bat F, F-31000 Toulouse, France
来源
ANNALS OF STATISTICS | 2005年 / 33卷 / 02期
关键词
hypothesis testing; nonparametric adaptive tests; selection methods;
D O I
10.1214/009053604000001200
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose new data-driven smooth tests for a parametric regression function. The smoothing parameter is selected through a new criterion that favors a large smoothing parameter under the null hypothesis. The resulting test is adaptive rate-optimal and consistent against Pitman local alternatives approaching the parametric model at a rate arbitrarily close to I/root n. Asymptotic critical values come from the standard normal distribution and the bootstrap can be used in small samples. A general formalization allows one to consider a large class of linear smoothing methods, which can be tailored for detection of additive alternatives.
引用
收藏
页码:840 / 870
页数:31
相关论文
共 50 条