We propose new data-driven smooth tests for a parametric regression function. The smoothing parameter is selected through a new criterion that favors a large smoothing parameter under the null hypothesis. The resulting test is adaptive rate-optimal and consistent against Pitman local alternatives approaching the parametric model at a rate arbitrarily close to I/root n. Asymptotic critical values come from the standard normal distribution and the bootstrap can be used in small samples. A general formalization allows one to consider a large class of linear smoothing methods, which can be tailored for detection of additive alternatives.
机构:
Univ North Texas, G Brint Ryan Coll Business, Dept Informat Technol & Decis Sci, 1155 Union Circle 305249, Denton, TX 76203 USAUniv North Texas, G Brint Ryan Coll Business, Dept Informat Technol & Decis Sci, 1155 Union Circle 305249, Denton, TX 76203 USA
Rubio-Herrero, Javier
Munuzuri, Jesus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Seville, Sch Engn, Camino Descubrimientos s-n, Seville 41092, SpainUniv North Texas, G Brint Ryan Coll Business, Dept Informat Technol & Decis Sci, 1155 Union Circle 305249, Denton, TX 76203 USA