Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome

被引:25
|
作者
Miyazato, Paola [1 ,2 ,3 ]
Katsuya, Hiroo [1 ,2 ,3 ]
Fukuda, Asami [1 ,2 ,3 ]
Uchiyama, Yoshikazu [4 ]
Matsuo, Misaki [1 ,2 ,3 ]
Tokunaga, Michiyo [1 ,2 ,3 ]
Hino, Shinjiro [5 ]
Nakao, Mitsuyoshi [5 ,6 ]
Satou, Yorifumi [1 ,2 ,3 ]
机构
[1] Kumamoto Univ, Ctr AIDS Res, Kumamoto 860, Japan
[2] Kumamoto Univ, Int Res Ctr Med Sci, Kumamoto 860, Japan
[3] Kumamoto Univ, Prior Org Innovat & Excellence, Kumamoto 860, Japan
[4] Kumamoto Univ, Fac Life Sci, Dept Med Phys, Kumamoto 860, Japan
[5] Kumamoto Univ, Inst Mol Biol & Embryol, Dept Med Cell Biol, Kumamoto 860, Japan
[6] Japan Sci & Technol Agcy, CREST, Tokyo, Japan
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
T-CELL LEUKEMIA; VIRUS TYPE-I; MOLECULAR EPIDEMIOLOGY; HTLV-1; HIV; SITE; VARIANTS; SUBTYPE; GENES;
D O I
10.1038/srep28324
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The recent development and advancement of next-generation sequencing (NGS) technologies have enabled the characterization of the human genome at extremely high resolution. In the retrovirology field, NGS technologies have been applied to integration-site analysis and deep sequencing of viral genomes in combination with PCR amplification using virus-specific primers. However, virus-specific primers are not available for some epigenetic analyses, like chromatin immunoprecipitation sequencing (ChIP-seq) assays. Viral sequences are poorly detected without specific PCR amplification because proviral DNA is very scarce compared to human genomic DNA. Here, we have developed and evaluated the use of biotinylated DNA probes for the capture of viral genetic fragments from a library prepared for NGS. Our results demonstrated that viral sequence detection was hundreds or thousands of times more sensitive after enrichment, enabling us to reduce the economic burden that arises when attempting to analyze the epigenetic landscape of proviruses by NGS. In addition, the method is versatile enough to analyze proviruses that have mismatches compared to the DNA probes. Taken together, we propose that this approach is a powerful tool to clarify the mechanisms of transcriptional and epigenetic regulation of retroviral proviruses that have, until now, remained elusive.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome
    Paola Miyazato
    Hiroo Katsuya
    Asami Fukuda
    Yoshikazu Uchiyama
    Misaki Matsuo
    Michiyo Tokunaga
    Shinjiro Hino
    Mitsuyoshi Nakao
    Yorifumi Satou
    [J]. Scientific Reports, 6
  • [2] Creation and application of immortalized bait libraries for targeted enrichment and next-generation sequencing
    Querfurth, Robert
    Fischer, Axel
    Schweiger, Michal R.
    Lehrach, Hans
    Mertes, Florian
    [J]. BIOTECHNIQUES, 2012, 52 (06) : 375 - 380
  • [3] Targeted enrichment of genomic DNA regions for next-generation sequencing
    Mertes, Florian
    ElSharawy, Abdou
    Sauer, Sascha
    van Helvoort, Joop M. L. M.
    van der Zaag, P. J.
    Franke, Andre
    Nilsson, Mats
    Lehrach, Hans
    Brookes, Anthony J.
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2011, 10 (06) : 374 - 386
  • [4] Genome, Exome, and Targeted Next-Generation Sequencing in Neonatal Diabetes
    De Franco, Elisa
    Ellard, Sian
    [J]. PEDIATRIC CLINICS OF NORTH AMERICA, 2015, 62 (04) : 1037 - +
  • [5] INTEGRATED GLIOMA DIAGNOSTICS USING TARGETED NEXT-GENERATION SEQUENCING
    Petersen, Jeanette K.
    Boldt, Henning B.
    Sorensen, Mia
    Dahlrot, Rikke H.
    Hansen, Steinbjorn
    Burton, Mark
    Thomassen, Mads
    Kruse, Torben
    Poulsen, Frantz R.
    Andreasen, Lotte
    Hager, Henrik
    Ulhoi, Benedicte P.
    Lukacova, Slavka
    Reifenberger, Guido
    Kristensen, Bjarne
    [J]. NEURO-ONCOLOGY, 2019, 21 : 104 - 104
  • [6] Clinical application of targeted next-generation sequencing for glioblastoma patients
    Le Mercier, Marie
    Trepant, Anne-Laure
    Maris, Calliope
    De Neve, Nancy
    Blanchard, Oriane
    D'Haene, Nicky
    Salmon, Isabelle
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2015, 36 : S75 - S75
  • [7] GENOME-WIDE AND TARGETED NEXT-GENERATION SEQUENCING, AND INSIGHTS TO THE LENS
    Jamieson, Robyn V.
    [J]. CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2013, 41 : 112 - 112
  • [8] Measuring the diversity of the human microbiota with targeted next-generation sequencing
    Finotello, Francesca
    Mastrorilli, Eleonora
    Di Camillo, Barbara
    [J]. BRIEFINGS IN BIOINFORMATICS, 2018, 19 (04) : 679 - 692
  • [9] Application of metagenomic next-generation sequencing and targeted metagenomic next-generation sequencing in diagnosing pulmonary infections in immunocompetent and immunocompromised patients
    Liu, Yong
    Wu, Wencai
    Xiao, Yunping
    Zou, Hongyan
    Hao, Sijia
    Jiang, Yanfang
    [J]. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14
  • [10] Application of extensively targeted next-generation sequencing for the diagnosis of primary immunodeficiencies
    Kojima, Daiei
    Wang, Xinan
    Muramatsu, Hideki
    Okuno, Yusuke
    Nishio, Nobuhiro
    Hama, Asahito
    Tsuge, Ikuya
    Takahashi, Yoshiyuki
    Kojima, Seiji
    [J]. JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2016, 138 (01) : 303 - 305