Color Segmentation for Historical Documents Using Markov Random Fields

被引:0
|
作者
Pantke, Werner [1 ]
Haak, Arne [1 ]
Maergner, Volker [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Commun Technol, Braunschweig, Germany
关键词
color segmentation; text segmentation; Markov random fields; historical documents; binarization; BINARIZATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Binarization is often used for pixel-wise document text extraction as preprocessing step for scanned historical documents. These documents are scanned in color and high resolution today. The reduction of color to grayscale images and the subsequent binarization implies a loss of information and often results in unsatisfying processing results. In this paper, a color segmentation instead of a binarization approach is used to segment text from background in historical manuscripts. A color segmentation approach based on Markov random fields with a reduced set of required parameters is presented to segment text written in different colors from noisy page background. First tests with historical Arabic manuscripts show promising results. In case of words written in light red color, our approach shows better results than a state-of-the-art binarization approach.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 50 条
  • [1] COLOR IMAGE SEGMENTATION USING MARKOV RANDOM-FIELDS
    DAILY, MJ
    [J]. IMAGE UNDERSTANDING WORKSHOP /, 1989, : 552 - +
  • [2] Adaptive color image segmentation using Markov random fields
    Wesolkowski, S
    Fieguth, P
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 769 - 772
  • [3] Color image segmentation with watershed on color histogram and Markov random fields
    Dai, SY
    Zhang, YJ
    [J]. ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 527 - 531
  • [4] Leukocytes Segmentation Using Markov Random Fields
    Reta, C.
    Altamirano, L.
    Gonzalez, J. A.
    Diaz, R.
    Guichard, J. S.
    [J]. SOFTWARE TOOLS AND ALGORITHMS FOR BIOLOGICAL SYSTEMS, 2011, 696 : 345 - 353
  • [5] Segmentation and labeling of documents using Conditional Random Fields
    Shetty, Shravya
    Srinivasan, Harish
    Beal, Matthew
    Srihari, Sargur
    [J]. DOCUMENT RECOGNITION AND RETRIEVAL XIV, 2007, 6500
  • [6] Unsupervised image segmentation using Markov Random Fields
    Sengur, Abdulkadir
    Turkoglu, Ibrahim
    Ince, M. Cevdet
    [J]. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 158 - 167
  • [7] Restored texture segmentation using Markov random fields
    Kinge, Sanjaykumar
    Rani, B. Sheela
    Sutaone, Mukul
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10063 - 10089
  • [8] STEREOPHONIC SPECTROGRAM SEGMENTATION USING MARKOV RANDOM FIELDS
    Kim, Minje
    Smaragdis, Paris
    Ko, Glenn G.
    Rutenbar, Rob A.
    [J]. 2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [9] Sea ice segmentation using Markov random fields
    Yue, B
    Clausi, DA
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1877 - 1879
  • [10] Markov Random Fields in Image Segmentation
    Kato, Zoltan
    Zerubia, Josiane
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2011, 5 (1-2): : 1 - 155