Sacrificial Silver Nanoparticles: Reducing GeI2 To Form Hollow Germanium Nanoparticles by Electroless Deposition

被引:16
|
作者
Nolan, Bradley M. [1 ]
Chan, Eric K. [1 ]
Zhang, Xinming [2 ]
Muthuswamy, Elayaraja [1 ]
van Benthem, Klaus [2 ]
Kauzlarich, Susan M. [1 ]
机构
[1] Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA
关键词
germanium nanoparticles; hollow; electroless deposition; galvanic replacement; silver nanoparticles; LITHIUM-ION BATTERIES; GALVANIC REPLACEMENT REACTIONS; ELECTROCHEMICAL PERFORMANCE; BIOLOGICAL APPLICATIONS; CRYSTALLINE GERMANIUM; COLLOIDAL SYNTHESIS; OPTICAL PROPERTIES; ANODE MATERIAL; NANOCRYSTALS; NANOSTRUCTURES;
D O I
10.1021/acsnano.6b01604
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein we report the electroless deposition of Ge onto sacrificial Ag nanoparticle (NP) templates to form hollow Ge NPs. The formation of AgI is a necessary component for this reaction. Through a systematic study of surface passivating ligands, we determined that tri-n-octylphosphine is necessary to facilitate the formation of hollow Ge NPs by acting as a transport agent for GeI2 and the oxidized Ag+ cation (i.e., AgI product). Annular dark field (ADF) scanning transmission electron microscopy (STEM) imaging of incomplete reactions revealed Ag/Ge core/shell NPs; in contrast, completed reactions displayed hollow Ge NPs with pinholes which is consistent with the known method for dissolution of the nanotemplate. Characterization of the hollow Ge NPs was performed by transmission electron microscopy, ADF-STEM, energy-dispersive X-ray spectroscopy, UV-vis spectrophotometry, and Raman spectroscopy. The galvanic replacement reaction of Ag with GeI2 offers a versatile method for controlling the structure of Ge nanomaterials.
引用
收藏
页码:5391 / 5397
页数:7
相关论文
共 50 条
  • [1] Synthesis of hollow Ge nanoparticles via electroless deposition
    Nolan, Bradley
    Muthuswamy, Elayaraja
    Chan, Eric
    Kauzlarich, Susan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [2] Low-temperature (210 °C) deposition of crystalline germanium via in situ disproportionation of GeI2
    Restrepo, David T.
    Lynch, Kristen E.
    Giesler, Kyle
    Kuebler, Stephen M.
    Blair, Richar G.
    MATERIALS RESEARCH BULLETIN, 2012, 47 (11) : 3484 - 3488
  • [3] Electroless Deposition of Silver onto Silica Nanoparticles to Produce Lipophilic Core-Shell Nanoparticles
    Brucks, Matthew David
    Arslanova, Alina
    Smith, Caroline Bridget
    Richards, Jeffrey John
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 646 : 663 - 670
  • [4] Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films
    Xu, Yanfang
    Qian, Kunpeng
    Deng, Dongmei
    Luo, Liqiang
    Ye, Jinhong
    Wu, Hongmin
    Miao, Miao
    Feng, Xin
    CARBOHYDRATE POLYMERS, 2020, 250
  • [5] Surface-Controlled Electroless Deposition Method in the Preparation of Stacked Silver Nanoparticles on Germanium for Surface-Enhanced Infrared Absorption Measurements
    Chang, Ruo-Lan Joan
    Yang, Jyisy
    APPLIED SPECTROSCOPY, 2010, 64 (02) : 211 - 218
  • [6] Microwave-assisted Electroless Deposition of Silver Nanoparticles onto Multiwalled Carbon Nanotubes
    Wu, Chung-Shu
    Lee, Chung-Yang
    Chen, Jem-Kun
    Kuo, Shiao-Wei
    Fan, Shih-Kang
    Cheng, Chih-Chia
    Chang, Feng-Chih
    Ko, Fu-Hsiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (05): : 4133 - 4142
  • [7] Space confined electroless deposition of silver nanoparticles for highly-uniform SERS detection
    Liu, Lingxiao
    Wu, Feifei
    Xu, Daren
    Li, Ning
    Lu, Nan
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 255 : 1401 - 1406
  • [8] Electroless deposition of silver thin films on gold nanoparticles catalyst for micro and nanoelectronics applications
    Inberg, A.
    Livshits, P.
    Zalevsky, Z.
    Shacham-Diamand, Y.
    MICROELECTRONIC ENGINEERING, 2012, 98 : 570 - 573
  • [9] Electroless deposition dynamics of silver nanoparticles clusters: A diffusion limited aggregation (DLA) approach
    Gentile, F.
    Coluccio, M. L.
    Toma, A.
    Rondanina, E.
    Leoncini, M.
    De Angelis, F.
    Das, G.
    Dorigoni, C.
    Candeloro, P.
    Di Fabrizio, E.
    MICROELECTRONIC ENGINEERING, 2012, 98 : 359 - 362
  • [10] Capturing Electrochemically Evolved Nanobubbles by Electroless Deposition. A Facile Route to the Synthesis of Hollow Nanoparticles
    Huang, Chienwen
    Jiang, Jiechao
    Lu, Mingyu
    Sun, Li
    Meletis, Efstathios I.
    Hao, Yaowu
    NANO LETTERS, 2009, 9 (12) : 4297 - 4301