A protocol for ultra-high field laminar fMRI in the human brain

被引:5
|
作者
Jia, Ke [1 ]
Zamboni, Elisa [1 ]
Rua, Catarina [2 ]
Goncalves, Nuno Reis [1 ]
Kemper, Valentin [3 ]
Ng, Adrian Ka Tsun [1 ,4 ]
Rodgers, Christopher T. [2 ]
Williams, Guy [2 ]
Goebel, Rainer [3 ]
Kourtzi, Zoe [1 ]
机构
[1] Univ Cambridge, Dept Psychol, Cambridge CB2 3EB, England
[2] Univ Cambridge, Wolfson Brain Imaging Ctr, Dept Clin Neurosci, Cambridge CB2 0QQ, England
[3] Maastricht Univ, Fac Psychol & Neurosci, Dept Cognit Neurosci, NL-6200 MD Maastricht, Netherlands
[4] Univ Hong Kong, Dept Ind & Mfg Syst Engn, Hong Kong, Peoples R China
来源
STAR PROTOCOLS | 2021年 / 2卷 / 02期
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
7; T; ACTIVATION; SIGNAL;
D O I
10.1016/j.xpro.2021.100415
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Ultra-high field (UHF) neuroimaging affords the sub-millimeter resolution that allows researchers to interrogate brain computations at a finer scale than that afforded by standard fMRI techniques. Here, we present a step-by-step protocol for using UHF imaging (Siemens Terra 7T scanner) to measure activity in the human brain. We outline how to preprocess the data using a pipeline that combines tools from SPM, FreeSurfer, ITK-SNAP, and BrainVoyager and correct for vasculature-related confounders to improve the spatial accuracy of the fMRI signal. For complete details on the use and execution of this protocol, please refer to Jia et al. (2020) and Zamboni et al. (2020).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] The future of ultra-high field MRI and fMRI for study of the human brain
    Duyn, Jeff H.
    [J]. NEUROIMAGE, 2012, 62 (02) : 1241 - 1248
  • [2] Ultra high resolution fMRI at ultra-high field
    Harel, Noam
    [J]. NEUROIMAGE, 2012, 62 (02) : 1024 - 1028
  • [3] Multi-slice passband bSSFP for human and rodent fMRI at ultra-high field
    Reynaud, Olivier
    da Silva, Analina R.
    Gruetter, Rolf
    Jelescu, Ileana O.
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2019, 305 : 31 - 40
  • [4] Diffusion MRI of the human brain at ultra-high field (UHF): A review
    Gallichan, Daniel
    [J]. NEUROIMAGE, 2018, 168 : 172 - 180
  • [5] Ultra-high field clinical MRI of normal human brain and glioma
    Yuh, W. T. C.
    Christoforidis, G. A.
    Sammet, S.
    Koch, R. M.
    Yang, M.
    Schmalbrock, P.
    Mayr, N. A.
    Lo, S. S.
    Knopp, M. V.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 69 (03): : S258 - S259
  • [6] A robust SSFP technique for fMRI at ultra-high field strengths
    Malekian, Vahid
    Nasiraei-Moghaddam, Abbas
    Khajehim, Mandi
    [J]. MAGNETIC RESONANCE IMAGING, 2018, 50 : 17 - 25
  • [7] Physiological measurements using ultra-high field fMRI: a review
    Francis, Sue
    Panchuelo, Rosa Sanchez
    [J]. PHYSIOLOGICAL MEASUREMENT, 2014, 35 (09) : R167 - R185
  • [8] Awake Mouse fMRI and Pupillary Recordings in the Ultra-High Magnetic Field
    Zeng, Hang
    Jiang, Yuanyuan
    Beer-Hammer, Sandra
    Yu, Xin
    [J]. FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [9] Ultra-high field (10.5 T) resting state fMRI in the macaque
    Yacoub, Essa
    Grier, Mark D.
    Auerbach, Edward J.
    Lagore, Russell L.
    Harel, Noam
    Adriany, Gregor
    Zilverstand, Anna
    Hayden, Benjamin Y.
    Heilbronner, Sarah R.
    Ugurbil, Kamil
    Zimmermann, Jan
    [J]. NEUROIMAGE, 2020, 223
  • [10] Comparing Denoising Approaches in Ultra-High Field Resting State fMRI
    Mehta, Marishka Manoj
    Jacob, Yael
    Morris, Laurel
    [J]. BIOLOGICAL PSYCHIATRY, 2022, 91 (09) : S219 - S220