Methods for assessing seasonal and annual trends in wasting in Indian surveys (NFHS-3, 4, RSOC & CNNS)

被引:4
|
作者
Johnston, Robert [1 ]
Dhamija, Gaurav [2 ]
Kapoor, Mudit [3 ]
Agrawal, Praween K. [4 ]
de Wagt, Arjan [1 ]
机构
[1] UNICEF, New Delhi, India
[2] Indian Inst Technol Hyderabad, Hyderabad, Telangana, India
[3] Indian Stat Inst, New Delhi, India
[4] IPE Global Ltd, Delhi, India
来源
PLOS ONE | 2021年 / 16卷 / 11期
关键词
CHILD UNDERNUTRITION; ACUTE MALNUTRITION; LOW-INCOME; DETERMINANTS; PREVALENCE; FOOD;
D O I
10.1371/journal.pone.0260301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wasting in children under-five is a form of acute malnutrition, a predictor of under-five child mortality and of increased risk of future episodes of stunting and/or wasting. In India, national estimates of wasting are high compared to international standards with one in five children found to be wasted. National surveys are complex logistical operations and most often not planned or implemented in a manner to control for seasonality. Collection of survey data across differing months across states introduces seasonal bias. Cross-sectional surveys are not designed to collect data on seasonality, thus special methods are needed to analyse the effect of data collection by month. We developed regression models to estimate the mean weight for height (WHZ), prevalence of wasting for every month of the year for an average year and an overall weighted survey estimates controlling for the socio-demographic variation of data collection across states and populations over time. National level analyses show the mean WHZ starts at its highest in January, falls to the lowest in June/ August and returns towards peak at year end. The prevalence of wasting is lowest in January and doubles by June/August. After accounting for seasonal patterns in data collection across surveys, the trends are significantly different and indicate a stagnant period followed by a decline in wasting. To avoid biased estimates, direct comparisons of acute malnutrition across surveys should not be made unless seasonality bias is appropriately addressed in planning, implementation or analysis. Eliminating the seasonal variation in wasting would reduce the prevalence by half and provide guidance towards further reduction in acute malnutrition.
引用
收藏
页数:16
相关论文
empty
未找到相关数据