Electrolyte Solvation Structure Design for Sodium Ion Batteries

被引:336
|
作者
Tian, Zhengnan [1 ]
Zou, Yeguo [2 ]
Liu, Gang [2 ]
Wang, Yizhou [1 ]
Yin, Jian [1 ]
Ming, Jun [2 ]
Alshareef, Husam N. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
关键词
electrolytes; sodium ion batteries; solvation structure; LITHIUM-ION; SUPERCONCENTRATED ELECTROLYTES; ELECTROCHEMICAL INTERCALATION; NONFLAMMABLE ELECTROLYTE; MOLECULAR-DYNAMICS; ETHYLENE CARBONATE; METAL BATTERIES; ANODE MATERIALS; CYCLE LIFE; CATHODE;
D O I
10.1002/advs.202201207
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium ion batteries (SIBs) are considered the most promising battery technology in the post-lithium era due to the abundant sodium reserves. In the past two decades, exploring new electrolytes for SIBs has generally relied on the "solid electrolyte interphase (SEI)" theory to optimize the electrolyte components. However, many observed phenomena cannot be fully explained by the SEI theory. Therefore, electrolyte solvation structure and electrode-electrolyte interface behavior have recently received tremendous research interest to explain the improved performance. Considering there is currently no review paper focusing on the solvation structure of electrolytes in SIBs, a systematic survey on SIBs is provided, in which the specific solvation structure design guidelines and their consequent impact on the electrochemical performance are elucidated. The key driving force of solvation structure formation, and the recent advances in adjusting SIB solvation structures are discussed in detail. It is believed that this review can provide new insights into the electrolyte optimization strategies of high-performance SIBs and even other emerging battery systems.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries
    Ao, Huaisheng
    Chen, Chunyuan
    Hou, Zhiguo
    Cai, Wenlong
    Liu, Mengke
    Jin, Yueang
    Zhang, Xin
    Zhu, Yongchun
    Qian, Yitai
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (28) : 14190 - 14197
  • [2] Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure
    Wang, Shiyang
    Chen, Yawei
    Jie, Yulin
    Lang, Shuangyan
    Song, Junhua
    Lei, Zhanwu
    Wang, Shuai
    Ren, Xiaodi
    Wang, Dong
    Li, Xiaolin
    Cao, Ruiguo
    Zhang, Genqiang
    Jiao, Shuhong
    SMALL METHODS, 2020, 4 (05)
  • [3] Design of a porous gel polymer electrolyte for sodium ion batteries
    Kim, Jin Il
    Chung, Kyung Yoon
    Park, Jong Hyeok
    JOURNAL OF MEMBRANE SCIENCE, 2018, 566 : 122 - 128
  • [4] Mini-Review on the Regulation of Electrolyte Solvation Structure for Aqueous Zinc Ion Batteries
    Wang, Bixia
    Xu, Hui
    Hao, Jiayi
    Du, Jinchao
    Wu, Chun
    Ma, Zhen
    Qin, Wei
    BATTERIES-BASEL, 2023, 9 (02):
  • [5] Design of a Single-Ion Conducting Polymer Electrolyte for Sodium-Ion Batteries
    Liu, Kewei
    Xie, Yingying
    Yang, Zhenzhen
    Kim, Hong-Keun
    Dzwiniel, Trevor L.
    Yang, Jianzhong
    Xiong, Hui
    Liao, Chen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (12)
  • [6] Quantitative Chemistry in Electrolyte Solvation Design for Aqueous Batteries
    Li, Leilei
    Cheng, Haoran
    Zhang, Junli
    Guo, Yingjun
    Sun, Chunsheng
    Zhou, Min
    Li, Qian
    Ma, Zheng
    Ming, Jun
    ACS ENERGY LETTERS, 2023, 8 (02) : 1076 - 1095
  • [7] Electrolyte Solvation Structure Design for High Voltage Zinc-Based Hybrid Batteries
    Jaumaux, Pauline
    Wang, Shijian
    Zhao, Shuoqing
    Sun, Bing
    Wang, Guoxiu
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (04)
  • [8] Electrolyte Solvation Structure Design for High Voltage Zinc-Based Hybrid Batteries
    Pauline Jaumaux
    Shijian Wang
    Shuoqing Zhao
    Bing Sun
    Guoxiu Wang
    Energy & Environmental Materials , 2023, (04) : 239 - 247
  • [9] Electrolyte Solvation Structure Design for High Voltage Zinc-Based Hybrid Batteries
    Pauline Jaumaux
    Shijian Wang
    Shuoqing Zhao
    Bing Sun
    Guoxiu Wang
    Energy & Environmental Materials, 2023, 6 (04) : 239 - 247
  • [10] Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries
    Flores, Eibar
    Avall, Gustav
    Jeschke, Steffen
    Johansson, Patrik
    ELECTROCHIMICA ACTA, 2017, 233 : 134 - 141