CONSERVATION LAWS OF THE TIME-FRACTIONAL ZAKHAROV-KUZNETSOV-BURGERS EQUATION

被引:0
|
作者
Naderifard, Azadeh [1 ]
Hejazi, S. Reza [1 ]
Dastranj, Elham [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Semnan, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2020年 / 44卷 / 01期
关键词
Generalized Zakharov-Kuznetsov-Burgers equation; Riemann Liouviile derivative; Caputo fractional derivative; Lie point symmetry; fractional conservation laws; NONLINEAR SCHRODINGER-EQUATION; LIE SYMMETRY ANALYSIS; SELF-ADJOINTNESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An important application of Lie group theory of differential equations is applied to study conservation laws of time-fractional Zakharov-Kuznetsov-Burgers (ZKB) equation with Riemann-Liouville and Caputo derivatives. This analysis is based on a modified version of Noether's theorem provided by Ibragimov to construct the conserved vectors of the equation. This is done by non-linearly self-adjointness of the equation which will be stated via a formal Lagrangian in the sequel.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条
  • [1] Conservation laws, analytical solutions and stability analysis for the time-fractional Schamel–Zakharov–Kuznetsov–Burgers equation
    O. H. EL-Kalaawy
    S. M. Moawad
    M. M. Tharwat
    Rasha B. Al-Denari
    Advances in Difference Equations, 2019
  • [2] Conservation laws, analytical solutions and stability analysis for the time-fractional Schamel-Zakharov-Kuznetsov-Burgers equation
    EL-Kalaawy, O. H.
    Moawad, S. M.
    Tharwat, M. M.
    Al-Denari, Rasha B.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [3] Conservation laws, exact solutions and stability analysis for time-fractional extended quantum Zakharov–Kuznetsov equation
    Naseem Abbas
    Akhtar Hussain
    Tarek F. Ibrahim
    Manal Yagoub Juma
    Fathea M. Osman Birkea
    Optical and Quantum Electronics, 56
  • [4] EXISTENCE AND UNIQUENESS OF ZAKHAROV-KUZNETSOV-BURGERS EQUATION WITH CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Bouteraa, Noureddine
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2024, 92 : 59 - 67
  • [5] A Study of Two-dimensional Zakharov-Kuznetsov-Burgers Equation
    Khalique, Chaudry Masood
    Plaatjie, Karabo
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [6] Zakharov-Kuznetsov-Burgers equation for dust ion acoustic waves
    Moslem, Waleed M.
    Sabry, R.
    CHAOS SOLITONS & FRACTALS, 2008, 36 (03) : 628 - 634
  • [7] Conservation laws, exact solutions and stability analysis for time-fractional extended quantum Zakharov-Kuznetsov equation
    Abbas, Naseem
    Hussain, Akhtar
    Ibrahim, Tarek F.
    Juma, Manal Yagoub
    Birkea, Fathea M. Osman
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [8] ¶¶Exact Traveling Wave Solutions and Bifurcation Analysis for Time Fractional Dual Power Zakharov-Kuznetsov-Burgers Equation
    Das, Amiya
    MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTING WITH APPLICATIONS, ICMMSC 2018, 2020, 308 : 35 - 49
  • [9] The 2D Zakharov-Kuznetsov-Burgers equation on a strip
    Larkin, Nikolai A.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (01): : 151 - 172
  • [10] Traveling wave solutions for the two-dimensional Zakharov-Kuznetsov-Burgers equation
    Shaikhova, G.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 92 (04): : 94 - 98