Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics

被引:295
|
作者
Wang, Yunteng [1 ,2 ,3 ]
Zhou, Xiaoping [1 ,2 ,3 ]
Xu, Xiao [1 ]
机构
[1] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400045, Peoples R China
[2] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[3] Chongqing Univ, Key Lab New Technol Construct Cities Mt Area, Chongqing 400045, Peoples R China
基金
中国国家自然科学基金;
关键词
Crack propagation; Crack coalescence; Compressive loads; Rock materials; Extended NOSB-PD; FINITE-ELEMENT-METHOD; DISCONTINUOUS DEFORMATION ANALYSIS; SMOOTH-PARTICLE HYDRODYNAMICS; ARBITRARY EVOLVING CRACKS; 2 UNPARALLEL FISSURES; UNIAXIAL COMPRESSION; MESHFREE METHOD; FRACTURE COALESCENCE; BRITTLE MATERIALS; SOLID MECHANICS;
D O I
10.1016/j.engfracmech.2016.06.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The maximum tensile stress criterion and the Mohr-Coulomb criterion are incorporated into the extended non-ordinary state-based peridynamics (NOSB-PD) to simulate the initiation, propagation and coalescence of the pre-existing flaws in rocks subjected to compressive loads. Wing cracks, oblique secondary cracks, quasi-coplanar secondary cracks and anti-wing cracks can be modeled and distinguished using the proposed numerical method. In the present study, a four-point beam in bending with two notches as a benchmark example is firstly conducted to verify the ability, accuracy and numerical convergence of the proposed numerical method. Then, the numerical samples of rock materials containing the one single pre-existing flaw with various lengths under uniaxial compression are modeled. Four significant factors, i.e. the axial stress versus axial strain curves, the peak strength, the ultimate failure mode and crack coalescence process, are obtained from the present numerical simulation. The effect of the flaw length on the propagation of cracks is investigated. Next, sandstone samples containing three pre-existing flaws with different ligament angles under uniaxial compression are also simulated. The effect of ligament angle on the propagation and coalescence of cracks is studied. Finally, rock-like samples containing two parallel pre-existing flaws subjected to biaxial compressive loads with confining stresses of 2.5, 5.0, 7.5 and 10.0 MPa are simulated. The effect of the confining stresses on the initiation, propagation and coalescence of flaws is investigated. The present numerical results are in good agreement with the previous experimental ones. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:248 / 273
页数:26
相关论文
共 50 条
  • [1] Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics
    Zhou, Xiaoping
    Wang, Yunteng
    Xu, Xiaomin
    INTERNATIONAL JOURNAL OF FRACTURE, 2016, 201 (02) : 213 - 234
  • [2] Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics
    Xiaoping Zhou
    Yunteng Wang
    Xiaomin Xu
    International Journal of Fracture, 2016, 201 : 213 - 234
  • [3] 3D numerical simulation of initiation, propagation and coalescence of cracks using the extended non-ordinary state-based peridynamics
    Shou, Yundong
    Zhou, Xiaoping
    Berto, Filippo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 101 : 254 - 268
  • [4] Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics
    Zhou, Xiaoping
    Wang, Yunteng
    Qian, Qihu
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2016, 60 : 277 - 299
  • [5] Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics
    Zhou, Xiao-Ping
    Wang, Yun-Teng
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2016, 89 : 235 - 249
  • [6] Modelling of viscoelastic materials using non-ordinary state-based peridynamics
    Galadima, Yakubu Kasimu
    Oterkus, Selda
    Oterkus, Erkan
    Amin, Islam
    El-Aassar, Abdel-Hameed
    Shawky, Hosam
    ENGINEERING WITH COMPUTERS, 2024, 40 (01) : 527 - 540
  • [7] Modelling of viscoelastic materials using non-ordinary state-based peridynamics
    Yakubu Kasimu Galadima
    Selda Oterkus
    Erkan Oterkus
    Islam Amin
    Abdel-Hameed El-Aassar
    Hosam Shawky
    Engineering with Computers, 2024, 40 : 527 - 540
  • [8] Numerical simulation of crack propagation and coalescence in marine cast iron materials using ordinary state-based peridynamics
    Li, Shuang
    Lu, Haining
    Huang, Xiaohua
    Yang, Jianmin
    Sun, Pengfei
    OCEAN ENGINEERING, 2022, 266
  • [9] Numerical simulation of crack propagation and coalescence in marine cast iron materials using ordinary state-based peridynamics
    Li, Shuang
    Lu, Haining
    Huang, Xiaohua
    Yang, Jianmin
    Sun, Pengfei
    Ocean Engineering, 2022, 266
  • [10] A non-ordinary state-based peridynamics framework for anisotropic materials
    Hattori, Gabriel
    Trevelyan, Jon
    Coombs, William M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 416 - 442