Prediction of perioperative transfusions using an artificial neural network

被引:22
|
作者
Walczak, Steven [1 ]
Velanovich, Vic [2 ]
机构
[1] Univ S Florida, Florida Ctr Cybersecur, Sch Informat, Tampa, FL 33620 USA
[2] Univ S Florida, Morsani Coll Med, Dept Surg, Tampa, FL 33620 USA
来源
PLOS ONE | 2020年 / 15卷 / 02期
关键词
CLINICAL-PRACTICE GUIDELINE; INDEPENDENT RISK-FACTOR; BLOOD-CELL TRANSFUSION; BODY-MASS INDEX; CARDIAC-SURGERY; DECISION-SUPPORT; POSTOPERATIVE COMPLICATIONS; LOGISTIC-REGRESSION; 30-DAY MORTALITY; ASPIRIN USE;
D O I
10.1371/journal.pone.0229450
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Accurate prediction of operative transfusions is essential for resource allocation and identifying patients at risk of postoperative adverse events. This research examines the efficacy of using artificial neural networks (ANNs) to predict transfusions for all inpatient operations. Methods Over 1.6 million surgical cases over a two year period from the NSQIP-PUF database are used. Data from 2014 (750937 records) are used for model development and data from 2015 (885502 records) are used for model validation. ANN and regression models are developed to predict perioperative transfusions for surgical patients. Results Various ANN models and logistic regression, using four variable sets, are compared. The best performing ANN models with respect to both sensitivity and area under the receiver operator characteristic curve outperformed all of the regression models (p < .001) and achieved a performance of 70-80% specificity with a corresponding 75-62% sensitivity. Conclusion ANNs can predict >75% of the patients who will require transfusion and 70% of those who will not. Increasing specificity to 80% still enables a sensitivity of almost 67%. The unique contribution of this research is the utilization of a single ANN model to predict transfusions across a broad range of surgical procedures.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Terrorism prediction using artificial neural network
    Soliman, Ghada M.A.
    Abou-El-Enien, Tarek H.M.
    [J]. Revue d'Intelligence Artificielle, 2019, 33 (02) : 81 - 87
  • [2] Prediction of Diabetes by using Artificial Neural Network
    Sapon, Muhammad Akmal
    Ismail, Khadijah
    Zainudin, Suehazlyn
    [J]. CIRCUITS, SYSTEM AND SIMULATION, 2011, 7 : 299 - 303
  • [3] Network Traffic Anomaly Prediction Using Artificial Neural Network
    Ciptaningtyas, Hening Titi
    Fatichah, Chastine
    Sabila, Altea
    [J]. ENGINEERING INTERNATIONAL CONFERENCE (EIC) 2016, 2017, 1818
  • [4] Pseudorange Correction Prediction Using Artificial Neural Network
    Alim, Onsy Abdel
    El-Rabbany, Ahmed
    Rashsd, Refaat
    Mohasseb, Mohamed
    [J]. PROCEEDINGS OF THE 2006 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION - NTM 2006, 2006, : 396 - 399
  • [5] Prediction of air pollutants by using an artificial neural network
    Sohn, SH
    Oh, SC
    Yeo, YK
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1999, 16 (03) : 382 - 387
  • [6] Using artificial neural network models for eutrophication prediction
    Huo, Shouliang
    He, Zhuoshi
    Su, Jing
    Xi, Beidou
    Zhu, Chaowei
    [J]. 2013 INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL SCIENCE AND TECHNOLOGY (2013 ISEST), 2013, 18 : 310 - 316
  • [7] Prediction of rubber vulcanization using an artificial neural network
    Lubura, Jelena D.
    Kojic, Predrag
    Pavlicevic, Jelena
    Ikonic, Bojana
    Omorjan, Radovan
    Bera, Oskar
    [J]. HEMIJSKA INDUSTRIJA, 2021, 75 (05) : 277 - 283
  • [8] SRAF Printing Prediction Using Artificial Neural Network
    Kwon, Yonghwi
    Yang, Jinho
    Kim, Sungho
    Kim, CheolKyun
    Shin, Youngsoo
    [J]. OPTICAL MICROLITHOGRAPHY XXXIII, 2021, 11327
  • [9] Prediction of the plasma distribution using an artificial neural network
    李炜
    陈俊芳
    王腾
    [J]. Chinese Physics B, 2009, 18 (06) : 2441 - 2444
  • [10] POSTTRANSPLANT TUBERCULOSIS PREDICTION USING ARTIFICIAL NEURAL NETWORK
    Starostina, Anna
    Parabina, Elena
    Maslikova, Ulyana
    Tsygankov, Igor
    Yaremin, Boris
    [J]. TRANSPLANT INTERNATIONAL, 2019, 32 : 413 - 413