Small-sample estimation of negative binomial dispersion, with applications to SAGE data

被引:721
|
作者
Robinson, Mark D. [1 ,2 ]
Smyth, Gordon K. [1 ]
机构
[1] Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3050, Australia
[2] Univ Melbourne, Dept Med Biol, Parkville, Vic 3010, Australia
关键词
conditional likelihood; dispersion; negative binomial; quantile adjustment; serial analysis of gene expression;
D O I
10.1093/biostatistics/kxm030
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive a quantile-adjusted conditional maximum likelihood estimator for the dispersion parameter of the negative binomial distribution and compare its performance, in terms of bias, to various other methods. Our estimation scheme outperforms all other methods in very small samples, typical of those from serial analysis of gene expression studies, the motivating data for this study. The impact of dispersion estimation on hypothesis testing is studied. We derive an "exact" test that outperforms the standard approximate asymptotic tests.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 50 条
  • [1] ON SMALL-SAMPLE ESTIMATION
    BROWN, GW
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (04): : 582 - 585
  • [2] Applications of small-sample statistical condition estimation in control
    Gudmundsson, TT
    Kenney, CS
    Laub, AJ
    Reese, MS
    [J]. PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 1996, : 164 - 169
  • [3] BAYESIAN SMALL-SAMPLE ESTIMATION OF MISCLASSIFIED MULTINOMIAL DATA
    VIANA, MAG
    [J]. BIOMETRICS, 1994, 50 (01) : 237 - 243
  • [4] SMALL-SAMPLE INTERVAL ESTIMATION USING QUANTAL DATA
    COBB, EB
    CHURCH, JD
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1985, 22 (3-4) : 189 - 202
  • [5] SMALL-SAMPLE PROPERTIES OF TESTS FOR 2 BINOMIAL PROPORTIONS
    RIEDWYL, H
    [J]. AMERICAN STATISTICIAN, 1989, 43 (03): : 188 - 188
  • [6] Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size
    Yu, Danni
    Huber, Wolfgang
    Vitek, Olga
    [J]. BIOINFORMATICS, 2013, 29 (10) : 1275 - 1282
  • [7] IMPROVED BOUNDS FOR SMALL-SAMPLE ESTIMATION
    Gratton, Serge
    Titley-Peloquin, David
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (02) : 922 - 931
  • [8] SMALL-SAMPLE INFERENCE FOR NON-INFERIORITY IN BINOMIAL EXPERIMENTS
    Davidson, Judy
    Kolassa, John
    [J]. FRONTIERS OF APPLIED AND COMPUTATIONAL MATHEMATICS, 2008, : 182 - 189
  • [9] Small-Sample Cryoprobe NMR Applications
    Martin, Gary Edwin
    [J]. EMAGRES, 2012, 1 (04): : 883 - 894
  • [10] Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases
    Lloyd-Smith, James O.
    [J]. PLOS ONE, 2007, 2 (02):