Phase-Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse

被引:98
|
作者
van der Meij, Roemer [1 ]
Kahana, Michael [2 ]
Maris, Eric [1 ]
机构
[1] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6525 HR Nijmegen, Netherlands
[2] Univ Penn, Dept Psychol, Philadelphia, PA 19104 USA
来源
JOURNAL OF NEUROSCIENCE | 2012年 / 32卷 / 01期
关键词
WORKING-MEMORY TASK; ACTIVITY IN-VIVO; NEOCORTICAL NEURONS; HIGH-FREQUENCY; GAMMA OSCILLATIONS; NETWORK MECHANISMS; THETA-OSCILLATIONS; CORTICAL-NEURONS; K-COMPLEX; CORTEX;
D O I
10.1523/JNEUROSCI.4816-11.2012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Spatially distributed phase-amplitude coupling (PAC) is a possible mechanism for selectively routing information through neuronal networks. If so, two key properties determine its selectivity and flexibility, phase diversity over space, and frequency diversity. To investigate these issues, we analyzed 42 human electrocorticographic recordings from 27 patients performing a working memory task. We demonstrate that (1) spatially distributed PAC occurred at distances > 10 cm, (2) involved diverse preferred coupling phases, and (3) involved diverse frequencies. Using a novel technique [N-way decomposition based on the PARAFAC (for Parallel Factor analysis) model], we demonstrate that (4) these diverse phases originated mainly from the phase-providing oscillations. With these properties, PAC can be the backbone of a mechanism that is able to separate spatially distributed networks operating in parallel.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 50 条
  • [1] Phase-amplitude coupling supports phase coding in human ECoG
    Watrous, Andrew J.
    Deuker, Lorena
    Fell, Juergen
    Axmacher, Nikolai
    [J]. ELIFE, 2015, 4
  • [2] Multitaper estimates of phase-amplitude coupling
    Lepage, Kyle Q.
    Fleming, Cavan N.
    Witcher, Mark
    Vijayan, Sujith
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (05)
  • [3] Enhanced phase-amplitude coupling of human electrocorticography selectively in the posterior cortical region during rapid eye movement sleep
    Togawa, Jumpei
    Matsumoto, Riki
    Usami, Kiyohide
    Matsuhashi, Masao
    Inouchi, Morito
    Kobayashi, Katsuya
    Hitomi, Takefumi
    Nakae, Takuro
    Shimotake, Akihiro
    Yamao, Yukihiro
    Kikuchi, Takayuki
    Yoshida, Kazumichi
    Kunieda, Takeharu
    Miyamoto, Susumu
    Takahashi, Ryosuke
    Ikeda, Akio
    [J]. CEREBRAL CORTEX, 2022, 33 (02) : 486 - 496
  • [4] Phase-Amplitude Coupling and Interlaminar Synchrony Are Correlated in Human Neocortex
    McGinn, Ryan J.
    Valiante, Taufik A.
    [J]. JOURNAL OF NEUROSCIENCE, 2014, 34 (48): : 15923 - 15930
  • [5] Human Thalamus Regulates Cortical Activity via Spatially Specific and Structurally Constrained Phase-Amplitude Coupling
    Malekmohammadi, Mahsa
    Elias, W. Jeff
    Pouratian, Nader
    [J]. CEREBRAL CORTEX, 2015, 25 (06) : 1618 - 1628
  • [6] A Precise Annotation of Phase-Amplitude Coupling Intensity
    Cheng, Ning
    Li, Qun
    Xu, Xiaxia
    Zhang, Tao
    [J]. PLOS ONE, 2016, 11 (10):
  • [7] A neural mass model of phase-amplitude coupling
    Chehelcheraghi, Mojtaba
    Nakatani, Chie
    Steur, Erik
    van Leeuwen, Cees
    [J]. BIOLOGICAL CYBERNETICS, 2016, 110 (2-3) : 171 - 192
  • [8] Phase-Amplitude Coupling in Spontaneous Mouse Behavior
    Thengone, Daniel
    Gagnidze, Khatuna
    Pfaff, Donald
    Proekt, Alex
    [J]. PLOS ONE, 2016, 11 (09):
  • [9] Thalamocortical control of propofol phase-amplitude coupling
    Soplata, Austin E.
    McCarthy, Michelle M.
    Sherfey, Jason
    Lee, Shane
    Purdon, Patrick L.
    Brown, Emery N.
    Kopell, Nancy
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (12)
  • [10] Phase-amplitude coupling in neuronal oscillator networks
    Qin, Yuzhen
    Menara, Tommaso
    Bassett, Danielle S.
    Pasqualetti, Fabio
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (02):