Recursion relations for conformal blocks

被引:93
|
作者
Penedones, Joao [1 ,2 ]
Trevisani, Emilio [1 ,3 ]
Yamazaki, Masahito [4 ,5 ]
机构
[1] Univ Porto, Fac Ciencias, Dept Fis & Astron, Ctr Fis Porto, Rua Campo Alegre 687, P-4169007 Oporto, Portugal
[2] CERN, CERN, Dept Theoret Phys, CH-1211 Geneva 23, Switzerland
[3] Univ Estadual Paulista, UNESP, ICTP, South Amer Inst Fundamental Res,Inst Fis Teor, Rua Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil
[4] Univ Tokyo, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan
[5] Princeton Univ Sch Nat Sci, Inst Adv Study, Princeton, NJ 08540 USA
来源
基金
巴西圣保罗研究基金会;
关键词
Conformal and W Symmetry; Field Theories in Higher Dimensions; REPRESENTATIONS; EXPANSION; VACUUM; SYMMETRY; ALGEBRA;
D O I
10.1007/JHEP09(2016)070
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension Delta of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in [1] for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.
引用
收藏
页数:51
相关论文
共 50 条