Probabilistic thermodynamic analysis of metabolic networks

被引:11
|
作者
Gollub, Mattia G.
Kaltenbach, Hans-Michael
Stelling, Joerg [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
HIT-AND-RUN;
D O I
10.1093/bioinformatics/btab194
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Random sampling of metabolic fluxes can provide a comprehensive description of the capabilities of a metabolic network. However, current sampling approaches do not model thermodynamics explicitly, leading to inaccurate predictions of an organism's potential or actual metabolic operations. Results: We present a probabilistic framework combining thermodynamic quantities with steady-state flux constraints to analyze the properties of a metabolic network. It includes methods for probabilistic metabolic optimization and for joint sampling of thermodynamic and flux spaces. Applied to a model of Escherichia coli, we use the methods to reveal known and novel mechanisms of substrate channeling, and to accurately predict reaction directions and metabolite concentrations. Interestingly, predicted flux distributions are multimodal, leading to discrete hypotheses on E.coli's metabolic capabilities.
引用
收藏
页码:2938 / 2945
页数:8
相关论文
共 50 条
  • [1] Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis
    Lea Seep
    Zahra Razaghi-Moghadam
    Zoran Nikoloski
    [J]. Scientific Reports, 11
  • [2] Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis
    Seep, Lea
    Razaghi-Moghadam, Zahra
    Nikoloski, Zoran
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Group contribution method for thermodynamic analysis of complex metabolic networks
    Jankowski, Matthew D.
    Henry, Christopher S.
    Broadbelt, Linda J.
    Hatzimanikatis, Vassily
    [J]. BIOPHYSICAL JOURNAL, 2008, 95 (03) : 1487 - 1499
  • [4] Thermodynamic Constraints Improve Metabolic Networks
    Krumholz, Elias W.
    Libourel, Igor G. L.
    [J]. BIOPHYSICAL JOURNAL, 2017, 113 (03) : 679 - 689
  • [5] ANALYSIS OF PROBABILISTIC NETWORKS
    WING, O
    DEMETRIOU, P
    [J]. IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY, 1964, CO12 (03): : 38 - &
  • [6] Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B2) Biosynthesis in Bacteria
    Birkenmeier, Markus
    Mack, Matthias
    Roeder, Thorsten
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 177 (03) : 732 - 752
  • [7] Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B2) Biosynthesis in Bacteria
    Markus Birkenmeier
    Matthias Mack
    Thorsten Röder
    [J]. Applied Biochemistry and Biotechnology, 2015, 177 : 732 - 752
  • [8] Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling
    Garg S.
    Yang L.
    Mahadevan R.
    [J]. BMC Research Notes, 3 (1)
  • [9] Sensitivity analysis of probabilistic networks
    van der Gaag, Linda C.
    Renooij, Sija
    Coupe, Veerle M. H.
    [J]. ADVANCES IN PROBABILISTIC GRAPHICAL MODELS, 2007, 213 : 103 - 124
  • [10] A Probabilistic Analysis of Kademlia Networks
    Cai, Xing Shi
    Devroye, Luc
    [J]. ALGORITHMS AND COMPUTATION, 2013, 8283 : 711 - 721