Time-dependent PT-symmetric quantum mechanics in generic non-Hermitian systems

被引:31
|
作者
Zhang, Da-Jian [1 ]
Wang, Qing-hai [1 ]
Gong, Jiangbin [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
PSEUDO-HERMITICITY; HAMILTONIANS; EVOLUTION; PHYSICS;
D O I
10.1103/PhysRevA.100.062121
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A conceptual framework extending (time-independent) PT-symmetric quantum mechanics into the time-dependent domain is presented. It is built upon a nontrivial time-dependent metric operator identified here and works for generic finite-dimensional non-Hermitian systems. All the ingredients of our framework, such as the time-dependent Hilbert space, the observable, and the measurement postulate, can be "realized" by means of dilating and reinterpreting the non-Hermitian system in question as a part of a larger Hermitian system. Aided by our metric operator, we formulate the concepts of stable and unstable phases for generic non-Hermitian systems and argue that they, respectively, generalize the notions of unbroken and broken phases in time-independent PT-symmetric systems. Possible applications of our framework are illustrated with well-known examples in quantum thermodynamics.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Time-dependent PT-symmetric quantum mechanics
    Gong, Jiangbin
    Wang, Qing-hai
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (48)
  • [2] Geometry of time-dependent PT-symmetric quantum mechanics
    Zhang, Da-Jian
    Wang, Qing-hai
    Gong, Jiangbin
    [J]. CHINESE PHYSICS B, 2021, 30 (10)
  • [3] Geometry of time-dependent PT-symmetric quantum mechanics
    张大剑
    王清海
    龚江滨
    [J]. Chinese Physics B, 2021, 30 (10) : 52 - 60
  • [4] Exponential type complex and non-Hermitian potentials in PT-symmetric quantum mechanics
    Yesiltas, Ö
    Simsek, M
    Sever, R
    Tezcan, C
    [J]. PHYSICA SCRIPTA, 2003, 67 (06) : 472 - 475
  • [5] The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems
    H. Fanchiotti
    C.A. García Canal
    M. Mayosky
    A. Veiga
    V. Vento
    [J]. Brazilian Journal of Physics, 2023, 53
  • [6] The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems
    Fanchiotti, H.
    Canal, C. A. Garcia
    Mayosky, M.
    Veiga, A.
    Vento, V.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2023, 53 (06)
  • [7] Controlling decoherence via PT-symmetric non-Hermitian open quantum systems
    Dey, Sanjib
    Raj, Aswathy
    Goyal, Sandeep K.
    [J]. PHYSICS LETTERS A, 2019, 383 (30)
  • [8] PT-symmetric non-Hermitian quantum field theories with supersymmetry
    Alexandre, Jean
    Ellis, John
    Millington, Peter
    [J]. PHYSICAL REVIEW D, 2020, 101 (08)
  • [9] Functional renormalization group for non-Hermitian and PT-symmetric systems
    Grunwald, Lukas
    Meden, Volker
    Kennes, Dante M.
    [J]. SCIPOST PHYSICS, 2022, 12 (05):
  • [10] Exceptional surfaces in PT-symmetric non-Hermitian photonic systems
    Zhou, Hengyun
    Lee, Jong Yeon
    Liu, Shang
    Zhen, Bo
    [J]. OPTICA, 2019, 6 (02): : 190 - 193