Bifurcations of invariant torus and knotted periodic orbits for the generalized Hopf-Langford system

被引:2
|
作者
Fu, Yanggeng [1 ]
Li, Jibin [1 ,2 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Bifurcation; Exact solution; Knotted periodic orbit; Invariant tours; Generalized Hopf-Langford system; CHAOTIC BEHAVIOR;
D O I
10.1007/s11071-021-06839-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we study the bifurcations of invariant torus and knotted periodic orbits for the generalized Hopf-Langford system. By using bifurcation theory of dynamical systems, we obtain the exact explicit form of the heteroclinic orbits and knot periodic orbits. Moreover, under small perturbation, we prove that the perturbed planar system has two symmetric stable limit cycles created by Poincare bifurcations. Therefore, the corresponding three-dimensional perturbed system has an attractive invariant rotation torus.
引用
收藏
页码:2097 / 2105
页数:9
相关论文
共 50 条
  • [1] Bifurcations of invariant torus and knotted periodic orbits for the generalized Hopf–Langford system
    Yanggeng Fu
    Jibin Li
    [J]. Nonlinear Dynamics, 2021, 106 : 2097 - 2105
  • [2] Invariant Tori and Heteroclinic Invariant Ellipsoids of a Generalized Hopf-Langford System
    Zhong, Jiyu
    Liang, Ying
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (13):
  • [3] Assessing the Non-Linear Dynamics of a Hopf-Langford Type System
    Nikolov, Svetoslav G.
    Vassilev, Vassil M.
    [J]. MATHEMATICS, 2021, 9 (18)
  • [4] About the Jacobi Stability of a Generalized Hopf-Langford System through the Kosambi-Cartan-Chern Geometric Theory
    Munteanu, Florian
    Grin, Alexander
    Musafirov, Eduard
    Pranevich, Andrei
    Sterbeti, Catalin
    [J]. SYMMETRY-BASEL, 2023, 15 (03):
  • [5] INVARIANT 3-TORUS BIFURCATIONS FROM PERIODIC MANIFOLDS
    孟艳双
    朱德明
    [J]. Annals of Applied Mathematics, 2000, (03) : 251 - 262
  • [6] Beltrami fields with hyperbolic periodic orbits enclosed by knotted invariant tori
    Enciso, Alberto
    Luque, Alejandro
    Peralta-Salas, Daniel
    [J]. ADVANCES IN MATHEMATICS, 2020, 373
  • [7] KNOTTED PERIODIC-ORBITS IN SUSPENSIONS OF SMALES HORSESHOE - TORUS KNOTS AND BIFURCATION SEQUENCES
    HOLMES, P
    WILLIAMS, RF
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 90 (02) : 115 - 194
  • [8] Hopf Bifurcations, Periodic Windows and Intermittency in the Generalized Lorenz Model
    Wawrzaszek, Anna
    Krasinska, Agata
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (14):
  • [9] Periodic solutions and invariant torus in the Rossler system
    Candido, Murilo R.
    Novaes, Douglas D.
    Valls, Claudia
    [J]. NONLINEARITY, 2020, 33 (09) : 4512 - 4539
  • [10] Bifurcations of Periodic Orbits for a Four-Dimensional System
    刘宣亮
    [J]. Journal of Shanghai Jiaotong University(Science), 2004, (02) : 82 - 86