We prove that there are no unexpected universal integral linear relations and congruences between Hodge, Betti and Chern numbers of compact complex manifolds and determine the linear combinations of such numbers which are bimeromorphic or topological invariants. This extends results in the Kahler case by Kotschick and Schreieder. We then develop a framework to tackle the more general questions taking into account 'all' cohomological invariants (e.g. the dimensions of the higher pages of the Frolicher spectral sequence, Bott-Chern and Aeppli cohomology). This allows us to reduce the general questions to specific construction problems. We solve these problems in many cases. In particular, we obtain full answers to the general questions concerning universal relations and bimeromorphic invariants in low dimensions.(c) 2022 Elsevier Inc. All rights reserved.
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Deng, Fusheng
Wang, Zhiwei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Wang, Zhiwei
Zhang, Liyou
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Zhang, Liyou
Zhou, Xiangyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
机构:
Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Tardini, Nicoletta
COMPLEX AND SYMPLECTIC GEOMETRY,
2017,
21
: 231
-
247