Mycorrhizas are worldwide symbiotic associations established between certain soil fungi and most vascular plants and are fundamental in optimizing plant fitness and soil quality. Mycorrhizal symbioses improve the resilience of plant communities against environment stresses, including nutrient deficiency, drought and soil disturbance. Since these stresses are paramount in the degradation of semi-arid ecosystems in the SE Spain, a series of basic, strategic and applied studies have been made to ascertain how the activity and diversity of mycorrhizal fungi affect plant community composition, structure and dynamics in this region. These investigations are reviewed here in terms of: (i) analysing the diversity of mycorrhizal fungi; (ii) assessing the ecological and functional interactions among plant communities and their associated mycorrhizal fungal populations; and (iii) using mycorrhizal inoculation technology for the restoration of degraded semi-arid areas in Southeast Spain. Disturbance of the target semi-arid ecosystems decreases the density and diversity of mycorrhizal fungust populations. Nevertheless, the mycorrhizal propagules do not disappear completely suggesting a certain degree of stress adaptation, and these remaining, resilient ecotypes are being used as plant inoculants. Numerous field experiments, using plant species from the natural succession inoculated with a community of indigenous mycorrhizal fungi, have been carried out in revegetation projects in the semi-arid Iberian Southeast. This management strategy improved both plant development and soil quality, and is a successful biotechnological tool to aid the restoration of self-sustaining ecosystems. However, despite a 20-year history of this work, we lack a comprehensive view of the mycorrhizal potential to improve the composition, diversity, structure and functionality of drought-adapted plant communities in the Region. (C) 2011 Elsevier Ltd. All rights reserved.