Uniform approximation by universal series on arbitrary sets

被引:2
|
作者
Stefanopoulos, Vangelis [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
D O I
10.1017/S0305004107000515
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By considering a tree-like decomposition of an arbitrary set we prove the existence of an associated series with the property that its partial sums approximate uniformly all elements in a relevant space of bounded functions. In a topological setting we show that these sums are dense in the space of continuous functions, hence in turn any Borel measurable function is the almost everywhere limit of an appropriate sequence of partial sums of the same series. The coefficients of the series may be chosen in c(0), or in a weighted l(P) with 1 < p < infinity, but not in the corresponding weighted l(1).
引用
收藏
页码:207 / 216
页数:10
相关论文
共 50 条
  • [1] Uniform polynomial approximation of entire functions on arbitrary compact sets in the complex plane
    Dovgoshei, AA
    MATHEMATICAL NOTES, 1995, 58 (3-4) : 921 - 927
  • [2] Uniform polynomial approximation and generalized growth of entire functions on arbitrary compact sets
    Srivastava, G. S.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (02) : 265 - 276
  • [3] Greedy approximation by arbitrary sets
    Borodin, P. A.
    IZVESTIYA MATHEMATICS, 2020, 84 (02) : 246 - 261
  • [4] Noncompact uniform universal approximation
    van Nuland, Teun D. H.
    NEURAL NETWORKS, 2024, 173
  • [5] Universal Approximation of Functions on Sets
    Wagstaff, Edward
    Fuchs, Fabian B.
    Engelcke, Martin
    Osborne, Michael A.
    Posner, Ingmar
    Journal of Machine Learning Research, 2022, 23
  • [6] Universal Approximation of Functions on Sets
    Wagstaff, Edward
    Fuchs, Fabian B.
    Engelcke, Martin
    Osborne, Michael A.
    Posner, Ingmar
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [7] UNIFORM APPROXIMATION ON COMPACT SETS IN CN
    HORMANDE.L
    WERMER, J
    MATHEMATICA SCANDINAVICA, 1968, 23 (01) : 5 - &
  • [8] Universal meromorphic approximation on Vitushkin sets
    W. Luh
    T. Meyrath
    M. Niess
    Journal of Contemporary Mathematical Analysis, 2008, 43 : 365 - 371
  • [9] Universal Meromorphic Approximation on Vitushkin Sets
    Luh, W.
    Meyrath, T.
    Niess, M.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (06): : 365 - 371
  • [10] Simultaneous approximation by universal series
    Tsirivas, N.
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (06) : 909 - 920