Controls on winter ecosystem respiration in temperate and boreal ecosystems

被引:38
|
作者
Wang, T. [1 ]
Ciais, P. [1 ]
Piao, S. L. [2 ,3 ]
Ottle, C. [1 ]
Brender, P. [1 ]
Maignan, F. [1 ]
Arain, A. [4 ]
Cescatti, A. [5 ]
Gianelle, D. [6 ]
Gough, C. [7 ]
Gu, L. [8 ]
Lafleur, P. [9 ]
Laurila, T. [10 ]
Marcolla, B. [11 ]
Margolis, H. [12 ]
Montagnani, L. [13 ,14 ]
Moors, E. [15 ]
Saigusa, N. [16 ]
Vesala, T. [17 ]
Wohlfahrt, G. [18 ]
Koven, C. [19 ]
Black, A. [20 ]
Dellwik, E. [21 ]
Don, A. [22 ]
Hollinger, D. [23 ]
Knohl, A. [24 ]
Monson, R. [25 ]
Munger, J. [26 ]
Suyker, A. [27 ]
Varlagin, A. [28 ]
Verma, S. [27 ]
机构
[1] CEA CNRS UVSQ, LSCE IPSL, UMR8212, UMR,CE LOrme des Merisiers, F-91191 Gif Sur Yvette, France
[2] Peking Univ, Dept Ecol, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China
[4] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON L8S 4K1, Canada
[5] Commiss European Communities, Climate Change Unit, Inst Environm & Sustainabil, DG Joint Res Ctr, Ispra, Italy
[6] Fdn Edmund Mach, Res & Innovat Ctr, IASMA, I-38040 Viote Del Monte Bondone, Trento, Italy
[7] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA
[8] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
[9] Trent Univ, Dept Geog, Peterborough, ON K9J 7B8, Canada
[10] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[11] Edmund Mach Fdn, Res & Innovat Ctr, I-38010 San Michele All Adige, Trento, Italy
[12] Univ Laval, Ctr Etud Foret, Fac Foresterie Geog & Geomat, Quebec City, PQ G1V 0A6, Canada
[13] Forest Serv & Agcy Environm, Bolzano, Italy
[14] Free Univ Bolzano, Fac Sci & Technol, Bolzano, Italy
[15] Alterra Wageningen UR, NL-6700 AA Wageningen, Netherlands
[16] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan
[17] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[18] Univ Innsbruck, Inst Ecol, A-6020 Innsbruck, Austria
[19] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[20] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada
[21] Tech Univ Denmark, Risoe Natl Lab Sustainable Energy, Wind Energy Div, DK-4000 Roskilde, Denmark
[22] Inst Agr Climate Res, Johann Heinrich von Thunen Inst, D-38116 Braunschweig, Germany
[23] US Forest Serv, No Res Stn, USDA, Durham, NH 03824 USA
[24] Univ Gottingen, Busgen Inst, Chair Bioclimatol, D-3400 Gottingen, Germany
[25] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA
[26] Harvard Univ, Div Engn & Appl Sci, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[27] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68583 USA
[28] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow 117071, Russia
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE EXCHANGE; NET ECOSYSTEM; SOIL RESPIRATION; CO2; EXCHANGE; INTERANNUAL VARIABILITY; DECIDUOUS FOREST; NORTHERN WISCONSIN; HARDWOOD FOREST; HIGH-ELEVATION; WATER-VAPOR;
D O I
10.5194/bg-8-2009-2011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (R-eco) of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from similar to 35 degrees N to similar to 70 degrees N. Deciduous forests were characterized by the highest winter R-eco rates (0.90 +/- 0.39 gCm(-2) d(-1)), when winter is defined as the period during which daily air temperature remains below 0 degrees C. By contrast, arctic wetlands had the lowest winter R-eco rates (0.02 +/- 0.02 gCm(-2) d(-1)). Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter R-eco rates (g Cm-2 d(-1)) of 0.70(+/- 0.33), 0.60(+/-0.38), 0.62(+/-0.43), 0.49(+/-0.22) and 0.27(+/-0.08), respectively. Our cross site analysis showed that winter air (T-air) and soil (T-soil) temperature played a dominating role in determining the spatial patterns of winter R-eco in both forest and managed ecosystems (grasslands and croplands). Besides temperature, the seasonal amplitude of the leaf area index (LAI), inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for R-eco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter R-eco sensitivity to temperature variation across space (Q(S)) was higher than the one over time (interannual, Q(T)). This can be expected because Q(S) not only accounts for climate gradients across sites but also for (positively correlated) the spatial variability of substrate quantity. Thus, if the models estimate future warming impacts on R-eco based on Q(S) rather than Q(T), this could overestimate the impact of temperature changes.
引用
收藏
页码:2009 / 2025
页数:17
相关论文
共 50 条
  • [1] Climate controls over the net carbon uptake period and amplitude of net ecosystem production in temperate and boreal ecosystems
    Fu, Zheng
    Stoy, Paul C.
    Luo, Yiqi
    Chen, Jiquan
    Sun, Jian
    Montagnani, Leonardo
    Wohlfahrt, Georg
    Rahman, Abdullah F.
    Rambal, Serge
    Bernhofer, Christian
    Wang, Jinsong
    Shirkey, Gabriela
    Niu, Shuli
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2017, 243 : 9 - 18
  • [2] Ecosystems and people in temperate and Boreal Forests
    Kessler, W
    [J]. FORESTRY CHRONICLE, 1996, 72 (06): : 576 - 579
  • [3] Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems
    Kergoat, Laurent
    Lafont, Sebastien
    Arneth, Almut
    Le Dantec, Valerie
    Saugier, Bernard
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G4)
  • [4] Persistence of carbaryl within boreal, temperate and Mediterranean ecosystems
    Hastings, FL
    Werner, RA
    Shea, PJ
    Holsten, EH
    [J]. JOURNAL OF ECONOMIC ENTOMOLOGY, 1998, 91 (03) : 665 - 670
  • [5] Characterizing Forest Fragments in Boreal, Temperate, and Tropical Ecosystems
    Meddens, Arjan J. H.
    Hudak, Andrew T.
    Evans, Jeffrey S.
    Gould, William A.
    Gonzalez, Grizelle
    [J]. AMBIO, 2008, 37 (7-8) : 569 - 576
  • [6] Ecology of the forest microbiome: Highlights of temperate and boreal ecosystems
    Uroz, S.
    Buee, M.
    Deveau, A.
    Mieszkin, S.
    Martin, F.
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2016, 103 : 471 - 488
  • [7] Conservation of biological diversity in temperate and boreal forest ecosystems
    Norton, TW
    [J]. FOREST ECOLOGY AND MANAGEMENT, 1996, 85 (1-3) : 1 - 7
  • [8] Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems
    Simpraga, Maja
    Ghimire, Rajendra P.
    Van Der Straeten, Dominique
    Blande, James D.
    Kasurinen, Anne
    Sorvari, Jouni
    Holopainen, Toini
    Adriaenssens, Sandy
    Holopainen, Jarmo K.
    Kivimaenpaa, Minna
    [J]. EUROPEAN JOURNAL OF FOREST RESEARCH, 2019, 138 (05) : 763 - 787
  • [9] Boreal and temperate trees show strong acclimation of respiration to warming
    Reich, Peter B.
    Sendall, Kerrie M.
    Stefanski, Artur
    Wei, Xiaorong
    Rich, Roy L.
    Montgomery, Rebecca A.
    [J]. NATURE, 2016, 531 (7596) : 633 - +
  • [10] Biomass production efficiency controlled by management in temperate and boreal ecosystems
    M. Campioli
    S. Vicca
    S. Luyssaert
    J. Bilcke
    E. Ceschia
    F. S. Chapin III
    P. Ciais
    M. Fernández-Martínez
    Y. Malhi
    M. Obersteiner
    D. Olefeldt
    D. Papale
    S. L. Piao
    J. Peñuelas
    P. F. Sullivan
    X. Wang
    T. Zenone
    I. A. Janssens
    [J]. Nature Geoscience, 2015, 8 : 843 - 846