Isospectral deformations of metrics on spheres

被引:23
|
作者
Gordon, CS [1 ]
机构
[1] Dartmouth Coll, Hanover, NH 03755 USA
关键词
D O I
10.1007/s002220100150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct non-trivial continuous isospectral deformations of Riemannian metrics on the ball and on the sphere in R" for every n greater than or equal to 9. The metrics on the sphere can be chosen arbitrarily close to the round metric; in particular, they can be chosen to be positively curved. The metrics on the ball are both Dirichlet and Neumann isospectral and can be chosen arbitrarily close to the flat metric.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 50 条