Fock spaces, Landau operators and the time-harmonic Maxwell equations

被引:7
|
作者
Constales, Denis [1 ,2 ]
Faustino, Nelson [3 ]
Krausshar, Rolf Soeren [4 ]
机构
[1] Univ Ghent, Dept Math Anal, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Chem Engn, Chem Technol Lab, B-9000 Ghent, Belgium
[3] Univ Coimbra, Ctr Math, P-3001454 Coimbra, Portugal
[4] Tech Univ Darmstadt, Fachbereich Math, Arbeitsgrp Algebra Geometrie & Funkt Anal, D-64289 Darmstadt, Germany
关键词
CLIFFORD ANALYSIS; HERMITE;
D O I
10.1088/1751-8113/44/13/135303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the representations of the solutions to Maxwell's equations based on the combination of hypercomplex function-theoretical methods with quantum mechanical methods. Our approach provides us with a characterization for the solutions to the time-harmonic Maxwell system in terms of series expansions involving spherical harmonics resp. spherical monogenics. Also, a thorough investigation for the series representation of the solutions in terms of eigenfunctions of Landau operators that encode n-dimensional spinless electrons is given. This new insight should lead to important investigations in the study of regularity and hypo-ellipticity of the solutions to Schrodinger equations with natural applications in relativistic quantum mechanics concerning massive spinor fields.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Nonlinear time-harmonic Maxwell equations in domains
    Thomas Bartsch
    Jarosław Mederski
    [J]. Journal of Fixed Point Theory and Applications, 2017, 19 : 959 - 986
  • [2] Nonlinear time-harmonic Maxwell equations in domains
    Bartsch, Thomas
    Mederski, Jarosaw
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 959 - 986
  • [3] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [4] Time-harmonic Maxwell equations with asymptotically linear polarization
    Qin, Dongdong
    Tang, Xianhua
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [5] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    [J]. HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [6] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [7] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [8] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137
  • [9] Discontinuous Galerkin methods for the time-harmonic Maxwell equations
    Houston, P
    Perugia, I
    Schneebeli, A
    Schötzau, D
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 483 - 492
  • [10] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    [J]. FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796