Completing the spectrum of r-orthogonal Latin squares

被引:9
|
作者
Zhu, L [1 ]
Zhang, HT
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
关键词
Latin square; r-orthogonal; self-orthogonal;
D O I
10.1016/S0012-365X(03)00053-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two Latin squares of order n are r-orthogonal if their superposition produces exactly r distinct pairs. It has been proved by Belyavskaya, Colbourn and the present authors that for all n greater than or equal to 7, r-orthogonal Latin squares of order n exist if and only if n less than or equal to r less than or equal to n(2) and r is not an element of {n+1,n(2)-1} with the possible exception of n = 14 and r = n(2)-3. In this paper, we first construct a self-orthogonal Latin square of order 14 which contains certain subarrays. Then we use this square to obtain a pair of (14(2)-3)-orthogonal Latin squares of order 14, determining the spectrum completely. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:343 / 349
页数:7
相关论文
共 50 条
  • [1] On the spectrum of mutually r-orthogonal idempotent Latin squares
    Yun-qing Xu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 813 - 822
  • [2] On the Spectrum of Mutually r-orthogonal Idempotent Latin Squares
    Yun-qing XU
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (03) : 813 - 822
  • [3] ON THE SPECTRUM OF r-ORTHOGONAL LATIN SQUARES OF DIFFERENT ORDERS
    Amjadi, H.
    Soltankhah, N.
    Shajarisales, N.
    Tahvilian, M.
    [J]. TRANSACTIONS ON COMBINATORICS, 2016, 5 (02) : 41 - 51
  • [4] On the Spectrum of Mutually r-orthogonal Idempotent Latin Squares
    Xu, Yun-qing
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (03): : 813 - 822
  • [5] A few more r-orthogonal Latin squares
    Zhu, L
    Zhang, H
    [J]. DISCRETE MATHEMATICS, 2001, 238 (1-3) : 183 - 191
  • [6] On the spectrum of r-self-orthogonal Latin squares
    Xu, YQ
    Chang, YX
    [J]. DISCRETE MATHEMATICS, 2004, 279 (1-3) : 479 - 498
  • [7] On completing Latin squares
    Hajirasouliha, Iman
    Jowhari, Hossein
    Kumar, Ravi
    Sundaram, Ravi
    [J]. STACS 2007, PROCEEDINGS, 2007, 4393 : 524 - +
  • [8] On completing latin squares
    Easton, T
    Parker, RG
    [J]. DISCRETE APPLIED MATHEMATICS, 2001, 113 (2-3) : 167 - 181
  • [9] COMPLETING PARTIAL LATIN SQUARES
    CRITTENDEN, R
    EYNDEN, CV
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 28 (02) : 125 - 129
  • [10] A note on completing Latin squares
    Ohman, Lars-Daniel
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 45 : 117 - 123