Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-1 for Promoting Bone Regeneration

被引:23
|
作者
Cheng, Cheng-Hsin [1 ,2 ]
Shie, Ming-You [3 ,4 ,5 ]
Lai, Yi-Hui [6 ]
Foo, Ning-Ping [1 ,7 ]
Lee, Mon-Juan [8 ,9 ]
Yao, Chun-Hsu [6 ,10 ,11 ,12 ]
机构
[1] Chang Jung Christian Univ, Grad Inst Med Sci, Tainan 71101, Taiwan
[2] China Med Univ, Nan Hosp, Dept Neurosurg, Tainan 70965, Taiwan
[3] China Med Univ Hosp, 3D Printing Med Res Ctr, Taichung 40402, Taiwan
[4] China Med Univ, Sch Dent, Taichung 40402, Taiwan
[5] Asia Univ, Dept Bioinformat & Med Engn, Taichung 40402, Taiwan
[6] China Med Univ, Dept Biomed Imaging & Radiol Sci, Taichung 40402, Taiwan
[7] China Med Univ, Nan Hosp, Dept Emergency Med, Tainan 70965, Taiwan
[8] Chang Jung Christian Univ, Dept Biosci Technol, Tainan 711301, Taiwan
[9] Chang Jung Christian Univ, Dept Med Sci Ind, Tainan 711301, Taiwan
[10] China Med Univ, Sch Chinese Med, Taichung 40402, Taiwan
[11] China Med Univ Hosp, Biomat Translat Res Ctr, Taichung 40402, Taiwan
[12] Asia Univ, Dept Biomed Informat, Taichung 40402, Taiwan
关键词
bone regeneration; polycaprolactone; poly-lactic acid; three-dimensional printing; transforming growth factor-beta; POLYLACTIC ACID; BIODEGRADABLE POLYMERS; COMPOSITE SCAFFOLDS; IMMOBILIZATION; PLA; BIOMATERIALS; PROTEIN-2; DEFECTS; CEMENT; GROWTH;
D O I
10.3390/polym13213731
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Our research was designed to evaluate the effect on bone regeneration with 3-dimensional (3D) printed polylactic acid (PLA) and 3D printed polycaprolactone (PCL) scaffolds, determine the more effective option for enhancing bone regeneration, and offer tentative evidence for further research and clinical application. Employing the 3D printing technique, the PLA and PCL scaffolds showed similar morphologies, as confirmed via scanning electron microscopy (SEM). Mechanical strength was significantly higher in the PLA group (63.4 MPa) than in the PCL group (29.1 MPa) (p < 0.01). Average porosity, swelling ratio, and degeneration rate in the PCL scaffold were higher than those in the PLA scaffold. SEM observation after cell coculture showed improved cell attachment and activity in the PCL scaffolds. A functional study revealed the best outcome in the 3D printed PCL-TGF-beta(1) scaffold compared with the 3D printed PCL and the 3D printed PCL-Polydopamine (PDA) scaffold (p < 0.001). As confirmed via SEM, the 3D printed PCL- transforming growth factor beta 1 (TGF-beta(1)) scaffold also exhibited improved cell adhesion after 6 h of cell coculture. The 3D printed PCL scaffold showed better physical properties and biocompatibility than the 3D printed PLA scaffold. Based on the data of TGF-beta(1), this study confirms that the 3D printed PCL scaffold may offer stronger osteogenesis.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Vascularized 3D printed scaffolds for promoting bone regeneration
    Yan, Yufei
    Chen, Hao
    Zhang, Hongbo
    Guo, Changjun
    Yang, Kai
    Chen, Kaizhe
    Cheng, Ruoyu
    Qian, Niandong
    Sandler, Niklas
    Zhang, Yu Shrike
    Shen, Haokai
    Qi, Jin
    Cui, Wenguo
    Deng, Lianfu
    BIOMATERIALS, 2019, 190 : 97 - 110
  • [2] Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering
    Kao, Chia-Tze
    Lin, Chi-Chang
    Chen, Yi-Wen
    Yeh, Chia-Hung
    Fang, Hsin-Yuan
    Shie, Ming-You
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 56 : 165 - 173
  • [3] Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration
    Nadi, Akram
    Khodaei, Mohammad
    Javdani, Moosa
    Mirzaei, Seyed Abbas
    Soleimannejad, Mostafa
    Tayebi, Lobat
    Asadpour, Shiva
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 219 : 1319 - 1336
  • [4] Promoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds
    Yeo, Taegyun
    Ko, Young-Gwang
    Kim, Eun Jin
    Kwon, Oh Kyoung
    Chung, Ho Yun
    Kwon, Oh Hyeong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 94 : 343 - 351
  • [5] Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration
    Heo, Seong-Yeong
    Ko, Seok-Chun
    Oh, Gun-Woo
    Kim, Namwon
    Choi, Il-Whan
    Park, Won Sun
    Jung, Won-Kyo
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2019, 107 (06) : 1937 - 1944
  • [6] 3D printed poly(lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications
    Nazeer, Muhammad Anwaar
    Onder, Ozgun Can
    Sevgili, Ilkem
    Yilgor, Emel
    Kavakli, Ibrahim Halil
    Yilgor, Iskender
    MATERIALS TODAY COMMUNICATIONS, 2020, 25
  • [7] 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization
    Velioglu, Zeynep Busra
    Pulat, Deniz
    Demirbakan, Beril
    Ozcan, Burak
    Bayrak, Ece
    Erisken, Cevat
    CONNECTIVE TISSUE RESEARCH, 2019, 60 (03) : 274 - 282
  • [8] The Osteogenesis and Degradation of 3D Printed Calcium Silicate/Polydopamine/Polycaprolactone Scaffolds for Bone Regeneration
    Ho, C.
    Wang, K.
    Shie, M.
    Chen, Y.
    Wang, B.
    TISSUE ENGINEERING PART A, 2017, 23 : S105 - S105
  • [9] Powder Coating 3D Printed Polycaprolactone Scaffolds for Tissue Regeneration
    Gruber, S. M.
    de Alarcon, A.
    van Aalst, J.
    Gordon, C. B.
    Lin, C. J.
    TISSUE ENGINEERING PART A, 2016, 22 : S101 - S101
  • [10] Biodegradable 3D Printed Scaffolds of Modified Poly (Trimethylene Carbonate) Composite Materials with Poly (L-Lactic Acid) and Hydroxyapatite for Bone Regeneration
    Kang, Honglei
    Jiang, Xudong
    Liu, Zhiwei
    Liu, Fan
    Yan, Guoping
    Li, Feng
    NANOMATERIALS, 2021, 11 (12)